1.AcWing 1057 股票交易4
#include<bits/stdc++.h> #pragma GCC optimize(2) #define ll long long #define rep(i,a,n) for(int i=a;i<=n;i++) #define per(i,n,a) for(int i=n;i>=a;i--) #define endl ' ' #define eps 0.000000001 #define pb push_back #define mem(a,b) memset(a,b,sizeof(a)) #define IO ios::sync_with_stdio(false);cin.tie(0); using namespace std; const int INF=0x3f3f3f3f; const ll inf=0x3f3f3f3f3f3f3f3f; const int mod=1e9+7; const int maxn=110+5; int a[maxn],dp[maxn][maxn][2]; int main(){ int n,m;cin>>n>>m; rep(i,1,n) cin>>a[i]; mem(dp,-INF); rep(i,0,n) dp[i][0][0]=0; rep(i,1,n){ rep(j,1,m){ dp[i][j][0]=max(dp[i-1][j][0],dp[i-1][j][1]+a[i]); dp[i][j][1]=max(dp[i-1][j][1],dp[i-1][j-1][0]-a[i]); } } int ans=0; rep(i,1,m){ ans=max(ans,dp[n][i][0]); } cout<<ans<<endl; }
2.AcWing 1058股票交易5
#include<bits/stdc++.h> #pragma GCC optimize(2) #define ll long long #define rep(i,a,n) for(int i=a;i<=n;i++) #define per(i,n,a) for(int i=n;i>=a;i--) #define endl ' ' #define eps 0.000000001 #define pb push_back #define mem(a,b) memset(a,b,sizeof(a)) #define IO ios::sync_with_stdio(false);cin.tie(0); using namespace std; const int INF=0x3f3f3f3f; const ll inf=0x3f3f3f3f3f3f3f3f; const int mod=1e9+7; const int maxn=1e5+5; int w[maxn],dp[maxn][3]; int main(){ int n;scanf("%d",&n); rep(i,1,n) scanf("%d",&w[i]); rep(i,0,n+2) dp[i][0]=dp[i][1]=-INF; rep(i,1,n){ dp[i][2]=max(dp[i-1][1],dp[i-1][2]); dp[i][1]=dp[i-1][0]+w[i]; dp[i][0]=max(dp[i-1][0],dp[i-1][2]-w[i]); } printf("%d ",max(dp[n][1],dp[n][2])); }
3.AcWing 1052涉及密码(KMP+状态机DP)
我认为这是一个暴力匹配的过程,但不失状态机模型转移的一般性。通俗一点来说,dp[i][j]表示我处理到S串的第i个位置和T串的第j个位置,现在要处理第S[i+1]个位置,我们知道S[i+1]存在‘a’~'z'共26种可能,所以我们需要kmp一步一步往前挪,直到匹配成功,这时候我们用u代替j,因为S[i+1]或许并不一定与原先的p[j+1]相等,此时就需要转移了,根据kmp的next数组,我们知道既然目前已经匹配,那么j往前跳也肯定在后缀是匹配的,直到跳到0为止(我写的代码是-1为止,next初始定义不同)。我们用u起先代替j来跳就可,最后dp[i+1][u]=(dp[i+1][u]+dp[i][j]),因为i+1,u可以由i,j转移得到
#include<bits/stdc++.h> #pragma GCC optimize(2) #define ll long long #define rep(i,a,n) for(int i=a;i<=n;i++) #define per(i,n,a) for(int i=n;i>=a;i--) #define endl ' ' #define eps 0.000000001 #define pb push_back #define mem(a,b) memset(a,b,sizeof(a)) #define IO ios::sync_with_stdio(false);cin.tie(0); using namespace std; const int INF=0x3f3f3f3f; const ll inf=0x3f3f3f3f3f3f3f3f; const int mod=1e9+7; const int maxn=1e5+5; int n,net[maxn];char p[maxn]; void getnext(char *p){ int lenp=strlen(p); net[0]=-1; int k=-1; int j=0; while(j<lenp){ if(k==-1||p[j]==p[k]){ j++;k++; net[j]=k; } else k=net[k]; } } int dp[55][55]; int main(){ cin>>n;scanf("%s",p); getnext(p); int m=strlen(p); dp[0][0]=1; for(int i=0;i<n;i++){ for(int j=0;j<m&&i-j+1>0;j++){ for(char k='a';k<='z';k++){ int u=j; while(u!=-1&&k!=p[u]) u=net[u]; ++u; if(u<m){ dp[i+1][u]=(dp[i+1][u]+dp[i][j])%mod; } } } } int res=0; for(int i=0;i<m;i++){ res=(res+dp[n][i])%mod; } cout<<res<<endl; }
AcWing1053(POJ3691).修复DNA(AC自动机+状态dp)
#include<bits/stdc++.h> #pragma GCC optimize(2) #define ll long long #define rep(i,a,n) for(int i=a;i<=n;i++) #define per(i,n,a) for(int i=n;i>=a;i--) #define endl ' ' #define eps 0.000000001 #define pb push_back #define mem(a,b) memset(a,b,sizeof(a)) #define IO ios::sync_with_stdio(false);cin.tie(0); using namespace std; const int INF=0x3f3f3f3f; const ll inf=0x3f3f3f3f3f3f3f3f; const int mod=1e9+7; int n; int getid(char c){ if(c == 'A') return 0; if(c == 'C') return 1; if(c == 'G') return 2; if(c == 'T') return 3; } class ac_auto{ public: const static int maxn=5e4+100; int tot,root; int tree[maxn][5]; bool End[maxn]; int fail[maxn];int ans[1005]; int newnode(){ for(int i=0;i<4;i++){ tree[tot][i]=0; } End[tot]=0; return tot++; } void init(){ mem(ans,0);tot=0; root=newnode(); } void insert_(string s){ int now = root; for(int i=0;i<s.length();i++){ int id=getid(s[i]); if(!tree[now][id]){ tree[now][id]=newnode(); } now=tree[now][id]; } End[now]=true; } void getFail(){ queue <int>q; for(int i=0;i<4;i++){ if(tree[0][i]){ fail[tree[0][i]] = 0; q.push(tree[0][i]); } } while(!q.empty()){ int now = q.front(); q.pop(); for(int i=0;i<4;i++){ if(tree[now][i]){ fail[tree[now][i]] = tree[fail[now]][i]; End[tree[now][i]]|=End[tree[fail[now]][i]]; q.push(tree[now][i]); } else tree[now][i] = tree[fail[now]][i]; } } } }acam; int dp[1010][1010]; int main(){ int T=1; while(cin>>n&&n){ acam.init(); rep(i,1,n){ string s;cin>>s; acam.insert_(s); } acam.getFail(); string a; cin>>a; int len=a.length(); a=" "+a; mem(dp,INF); dp[0][0]=0; for(int i=0;i<len;i++){ for(int j=0;j<acam.tot;j++){ for(int k=0;k<4;k++){ int t=getid(a[i+1])!=k; int p=acam.tree[j][k]; if(!acam.End[p]) dp[i+1][p]=min(dp[i+1][p],dp[i][j]+t); } } } int res=INF; for(int i=0;i<acam.tot;i++) res=min(res,dp[len][i]); if(res==INF) res=-1; printf("Case %d: %d ",T++,res); } }