zoukankan      html  css  js  c++  java
  • [Algorithm] Maximum Contiguous Subarray algorithm implementation using TypeScript / JavaScript

    Naive solution for this problem would be caluclate all the possible combinations:

    const numbers = [1, -3, 2 - 5, 7, 6, -1, -4, 11, -23];
    
    // O(n^3)
    const findMaxSubAry = numbers => {
      let answer = Number.MIN_VALUE;
      /**
       * Calculate all the possible values and pick the max one
       * All possible values should be
       * length = 1, 2, ,3 ... n
       *  Pick differnet start point
       */
    
      // For different lenght
      for (let l = 0; l < numbers.length; l++) {
        // O(n)
        // For different start
        for (let s = 0; s < l; s++) {
          // O(n)
          if (s + l >= numbers.length) {
            break;
          }
          let sum = 0;
          for (let i = s; i < s + l; i++) {
            // O(n)
            sum += numbers[i];
          }
    
          answer = Math.max(answer, sum);
        }
      }
    
      return answer;
    };
    
    console.log(findMaxSubAry(numbers));  // 19

    The maximum subarray problem is one of the nicest examples of dynamic programming application.

    In this lesson we cover an example of how this problem might be presented and what your chain of thought should be to tackle this problem efficiently.

     /**
      * Maximum Contiguous subarray algorithm
      * 
      * Max(i) = Max(i-1) + v(i)
      * Max(i-1) < 0 ? v(i) : Max(i-1)
      * 
      * Combining
    ---------
    maxInc(i) = maxInc(i - 1) > 0 ? maxInc(i - 1) + val(i) : val(i)
    max(i) = maxInc(i) > max(i - 1) ? maxInc(i) : max(i - 1)
      */
    function maxSumSubArray(arr) {
      /**
       *   inx  | val   |  max_inc    | max 
       *          0       0            0
       *    0     -2      0            0
       *    1     -3      0            0
       *    2     4       4            4     ---> start = 2
       *    3     -1      3            4
       *    4     -2      1            4
       *    5     1       2            4
       *    6     5       7            7     ---> end  = 6
       *    7     -3      4            7             
       */
    
      let val = 0, max_inc = 0, max = 0, start = 0, end = 0;
    
      for (let i = 1; i < arr.length; i++) {
        val = arr[i];
        max_inc = Math.max(max_inc + val, val);
        max = Math.max(max, max_inc);
    
        if (val === max_inc) {
          start = i;
        }
    
        if (max === max_inc) {
          end = i;
        }
      }
    
      if (end === 0) {
        end = start;
      }
      console.log(start, end);
      return arr.slice(start, end + 1);
    }
    
    console.log(maxSumSubArray([-2, -3, 4, -1, -2, 1, 5, -3])); //[4, -1, -2, 1, 5]
    console.log(maxSumSubArray([-2,-3,-4,-1,-2])); // [-2]
  • 相关阅读:
    P1410 子序列 (动态规划)
    P2085 最小函数值 (堆)
    [ZJOI2007]棋盘制作 (单调栈,动态规划)
    [ZJOI2005]午餐 (贪心,动态规划)
    黑匣子_NOI导刊2010提高 (对顶堆)
    [BZOJ1455] 罗马游戏 (左偏树||并查集)
    P1651 塔 (动态规划)
    两类斯特林数 (组合数学)
    从编程到工程
    失败的过程也是过程
  • 原文地址:https://www.cnblogs.com/Answer1215/p/10227039.html
Copyright © 2011-2022 走看看