zoukankan      html  css  js  c++  java
  • [Python] Slice the data with pandas

    For example we have dataframe like this:

                       SPY        AAPL         IBM        GOOG         GLD
    2017-01-03  222.073914  114.311760  160.947433  786.140015  110.470001
    2017-01-04  223.395081  114.183815  162.940125  786.900024  110.860001
    2017-01-05  223.217606  114.764473  162.401047  794.020020  112.580002
    2017-01-06  224.016220  116.043915  163.200043  806.150024  111.750000
    2017-01-09  223.276779  117.106812  161.390244  806.650024  112.669998
    ...

    Now we only we want to get highlighted part:

                       SPY        AAPL         IBM        GOOG         GLD
    2017-01-03  222.073914  114.311760  160.947433  786.140015  110.470001
    2017-01-04  223.395081  114.183815  162.940125  786.900024  110.860001
    2017-01-05  223.217606  114.764473  162.401047  794.020020  112.580002
    2017-01-06  224.016220  116.043915  163.200043  806.150024  111.750000
    2017-01-09  223.276779  117.106812  161.390244  806.650024  112.669998

    We can use Dataframe.ix[] method to get date related index data from the list.

    if __name__ == '__main__':
        data=get_data()
        data=data.ix['2017-12-01':'2017-12-15', ['IBM', 'GOOG']]    
        print(data)
        """
                           IBM         GOOG
        2017-12-01  154.759995  1010.169983
        2017-12-04  156.460007   998.679993
        2017-12-05  155.350006  1005.150024
        2017-12-06  154.100006  1018.380005
        2017-12-07  153.570007  1030.930054
        2017-12-08  154.809998  1037.050049
        2017-12-11  155.410004  1041.099976
        2017-12-12  156.740005  1040.479980
        2017-12-13  153.910004  1040.609985
        2017-12-15  152.500000  1064.189941
        """
  • 相关阅读:
    用java在mysql中随机插入9000 000条数据
    java连接mysql的一个小例子
    JDK环境变量配置
    JVM工作原理
    线程和进程的区别
    java实现链表
    内连接、外连接、左连接、右连接
    udp协议
    要看的东西
    eclipse快捷键
  • 原文地址:https://www.cnblogs.com/Answer1215/p/8053677.html
Copyright © 2011-2022 走看看