zoukankan      html  css  js  c++  java
  • 损失函数(均方误差、交叉熵)

    1.  平方损失函数

    L2范数损失函数,也被称为最小平方误差(LSE)。它是把目标值$y_i$与估计值$f(x_i)$的差值的平方和最小化。一般回归问题会使用此损失,离群点对次损失影响较大。

    $L=sum_{i=1}^n(y_i−f(x_i))^2$

    2.交叉熵损失函数

    分类问题因为输出的是概率,故而一般使用的是此损失。

    假设目标值:$y_i$、估计值:$f(x_i)$

    交叉熵损失的公式是$L=sum_{i=1}^n−[y_i ln f(x_i)+(1−y_i)ln(1−f(x_i))]$

    易混淆点

    注意公式不是$L=sum_{i=1}^n−[f(x_i)ln y_i +(1−f(x_i))ln(1−y_i)]$,因为当真实的label $y_i=0$时,$lny_i$没有意义;当期望$y_i=1$时,$ln(1-y_i)$没有意义。而因为$f(x_i)$是sigmoid函数的实际输出,永远不会等于0或1,只会无限接近于0或者1,因此不存在这个问题。 

    当真实label  $y_i$与期望输出$f(x_i)$接近的时候,代价函数接近于0。

    熵的概念请参考:https://www.cnblogs.com/AntonioSu/p/12442802.html 

    3.绝对值损失函数(LAE)

    也被称为L1范数损失函数,最小绝对值偏差(LAD)。总的说来,它是把目标值$y_i$与估计值$f(x_i)$的绝对差值的总和最小化。

    $L=sum_{i=1}^n|y_i−f(x_i)|$ 

    4.对数损失函数 

    $L(y,h(x))=log(1-exp(yh(x)))$

     

  • 相关阅读:
    jTopo——js库
    node.js
    php 入门笔记
    D3 入门笔记
    webpack笔记
    React.js
    Grunt等前端自动化构建工具
    vue3.0的新特性
    electron-builder 打包流程
    vue里面如何下载图片,如何下载文件
  • 原文地址:https://www.cnblogs.com/AntonioSu/p/12204553.html
Copyright © 2011-2022 走看看