zoukankan      html  css  js  c++  java
  • HDU 3711 Binary Number【水题】【bitset】

    Binary Number

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 2714    Accepted Submission(s): 1573


    Problem Description
    For 2 non-negative integers x and y, f(x, y) is defined as the number of different bits in the binary format of x and y. For example, f(2, 3)=1,f(0, 3)=2, f(5, 10)=4. Now given 2 sets of non-negative integers A and B, for each integer b in B, you should find an integer a in A such that f(a, b) is minimized. If there are more than one such integer in set A, choose the smallest one.
     

    Input
    The first line of the input is an integer T (0 < T ≤ 100), indicating the number of test cases. The first line of each test case contains 2 positive integers m and n (0 < m, n ≤ 100), indicating the numbers of integers of the 2 sets A and B, respectively. Then follow (m + n) lines, each of which contains a non-negative integers no larger than 1000000. The first m lines are the integers in set A and the other n lines are the integers in set B.
     

    Output
    For each test case you should output n lines, each of which contains the result for each query in a single line.
     

    Sample Input
    2 2 5 1 2 1 2 3 4 5 5 2 1000000 9999 1423 3421 0 13245 353
     

    Sample Output
    1 2 1 1 1 9999 0
     

    Author
    CAO, Peng
     

    Source


    给n个数和m个数,判断对于m哪个n与它相差2进制数最少


    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    #include <vector>
    #include <bitset>
    #include <queue>
    #define INF 0x3f3f3f3f
    using namespace std;
    
    const int maxn = 110;
    const int n = 100;
    
    bitset<20> a[maxn], b[maxn];
    int num[maxn];
    
    int f(int p, int q)
    {
    	int ans = 0;
    	for (int i = 0; i < 20; i++)
    	{
    		if (a[p][i] != b[q][i]) ans++;
    	}
    	return ans;
    }
    
    int main()
    {
    	int t;
    	scanf("%d", &t);
    	while (t--)
    	{
    		int n, m;
    		scanf("%d%d", &n, &m);
    		for (int i = 0; i < n; i++)
    		{
    			scanf("%d", num + i);
    			a[i] = num[i];
    		}
    		for (int j = 0; j < m; j++)
    		{
    			int p;
    			scanf("%d", &p);
    			b[j] = p;
    		}
    		for (int i = 0; i < m; i++)
    		{
    			int ans = INF, val = -1;
    			for (int j = 0; j < n; j++)
    			{
    				int temp = f(j, i);
    				if (temp < ans)
    				{
    					ans = temp;
    					val = num[j];
    				}
    				else if (temp == ans && (val == -1 || num[j] < val))
    				{
    					val = num[j];
    				}
    			}
    			printf("%d
    ", val);
    		}
    	}
    }


    Fighting~
  • 相关阅读:
    内置函数
    递归函数:
    函数(迭代器与生成器)
    函数的装饰器
    函数:(函数的名字,闭包)
    函数(命名空间,作用域,嵌套)
    函数:(定义,调用,返回值和参数)
    hdu 4267 A Simple Problem with Integers(线段树)
    hdu 2089 不要62 hdu 3555 Bomb (数位DP)
    poj 2955 Brackets (区间DP)
  • 原文地址:https://www.cnblogs.com/Archger/p/8451628.html
Copyright © 2011-2022 走看看