zoukankan      html  css  js  c++  java
  • P5278 算术天才⑨与等差数列

    给定一个长度为 (n) 的序列,第 (i) 个数为 (a_i)

    进行以下操作:

    • 单点修改
    • 查询区间排完序是否是个公差为 (k) 的等差数列

    (1leq n,mleq 3 imes10^5, 0leq a_i,y,kleq10^9)

    solution:

    一种新方法:维护区间的平方和的 (hash)

    如果这个区间为等差数列,首项为 (x) ,公差为 (k) ,项数为 (n) 那么就有

    [hash = sum_{i = 0}^{i = n - 1}(x + ki)^2 \ = sum_{i = 0}^{i = n - 1}(x^2 + 2kix + k^2i^2)\~~ = nx^2 + 2ksum_{i = 0}^{i = n - 1}ix + k^2sum_{i = 0}^{i = n - 1}i^2 ]

    [sum_{i = 0}^{i = n - 1}i = frac{(n - 1) imes n}{2} ]

    [sum_{i = 0}^{i = n - 1}i^2 = frac{n(n - 1)(2n - 1)}{6} ]

    [hash = nx^2 + k(n - 1)nx + frac{k^2 n(n - 1)(2n - 1)}{6} ]

    维护两个 hash 值,线段树维护两个区间平方和,最后比较是否相等就可以判断等差数列了

    /*
    work by:Ariel_
    inv[10^9 + 7] = 166666668
    inv[10^9 + 9] = 833333341
    */
    #include <iostream>
    #include <cstring>
    #include <cstdio>
    #include <queue>
    #include <algorithm>
    #define rg register
    #define lson rt << 1
    #define rson rt << 1 | 1
    #define mid ((tree[rt].l + tree[rt].r) >> 1) 
    using namespace std;
    const int N = 3e5 + 100;
    const int mod1 = 1e9 + 7;
    const int mod2 = 1e9 + 9;
    const int INF = 0x7fffffff;
    typedef long long ll;
    int read(){	
        int x = 0,f = 1; char c = getchar();
        while(c < '0'||c > '9') {if(c == '-') f = -1; c = getchar();}
        while(c >= '0' && c <= '9') {x = x*10 + c - '0'; c = getchar();}
        return x*f;
    }
    int a[N];
    struct Tree{int l, r, min, val1, val2;}tree[N << 2];
    void push_up(int rt) {
       tree[rt].min = min(tree[lson].min, tree[rson].min);
       tree[rt].val1 = (tree[lson].val1 + tree[rson].val1) % mod1;
       tree[rt].val2 = (tree[lson].val2 + tree[rson].val2) % mod2;
    }
    void build(int rt, int l, int r) {
      tree[rt].l = l, tree[rt].r = r;
      if (l == r) {
        tree[rt].min = a[l];
        tree[rt].val1 = (ll(a[l]) * a[l]) % mod1;
        tree[rt].val2 = (ll(a[l])* a[l]) % mod2;
        return ;
      } 
      build(lson, l, mid), build(rson, mid + 1, r);
      push_up(rt); 
    }
    int query_min(int rt, int L, int R) {
       if (L <= tree[rt].l && tree[rt].r <= R) return tree[rt].min;
       int res = INF;
       if (L <= mid) res = min(res, query_min(lson, L, R));
       if (R > mid) res = min(res, query_min(rson, L, R));
       return res;
    }
    int query_val1(int rt, int L, int R) {
       if (L <= tree[rt].l && tree[rt].r <= R) return tree[rt].val1;
       int res = 0;
       if (L <= mid) res += query_val1(lson, L, R),  res %= mod1;
       if (R > mid) res += query_val1(rson, L, R), res %= mod1;
       return res;
    }
    int query_val2(int rt, int L, int R) {
       if (L <= tree[rt].l && tree[rt].r <= R) return tree[rt].val2;
       int res = 0;
       if (L <= mid) res += query_val2(lson, L, R), res %= mod2;
       if (R > mid) res += query_val2(rson, L, R), res %= mod2;
       return res;
    } 
    void modify(int rt, int pos, int k) {
        if (tree[rt].l == tree[rt].r) {
           tree[rt].min = k;
           tree[rt].val1 = (ll(k) * k) % mod1;
           tree[rt].val2 = (ll(k) * k) % mod2;
           return ; 
    	}
    	if (pos <= mid) modify(lson, pos, k);
    	else modify(rson, pos, k);
    	push_up(rt);
    }
    int solve(ll x, ll n, ll k, ll mod){
    	x %= mod,n %= mod,k %= mod;
    	ll res = 0;
    	res += ((ll(n) * x % mod) * x) % mod, res %= mod;
    	res += (((ll(n) * (n - 1)  % mod) * k % mod) * x) % mod,res %= mod;
    	res += (((((ll(k) * k  % mod) * n % mod) * (n - 1) % mod) * (2 * n - 1) % mod) * ((mod == 1e9 + 7) ? 166666668 : 833333341)) % mod,res %= mod;
    	return res % mod;
    }
    bool Check(int l, int r, int k) {
        int n = r - l + 1, x = query_min(1, l, r);
        return query_val1(1, l, r) == solve(x, n, k, mod1) && (query_val2(1, l, r) == solve(x, n, k, mod2));
    }
    int n, m, opt, cnt;
    int main(){
       //freopen("a.in", "r", stdin);
       n = read(), m = read();
       for (int i = 1; i <= n; i++) a[i] = read();
       build(1, 1, n);
       for (int i = 1; i <= m; i++) {
       	  int opt = read();
       	  if (opt == 1) {
       	     int x = read(), y = read();
       	     modify(1, x ^ cnt, y ^ cnt);
    	  }
    	  else {
    	  	int l = read(), r = read(), k = read();
    		Check(l ^ cnt, r ^ cnt, k ^ cnt) ? cnt++, printf("Yes
    ") : printf("No
    ");
    	  }
       }
    	return 0;
    }
    
  • 相关阅读:
    iOS controller 和 window 图层
    iOS CGAffineTransform 仿射变换
    iOS UIButton的UIEdgeInsets
    iOS UI的动态布局
    iOS 栅格动态布局
    iOS 系统键盘几个类型
    iOS 金融类高精度处理
    Sublime Text (崇高文本)
    iOS 静态库——制作bundle
    iOS 静态库——制作Framework
  • 原文地址:https://www.cnblogs.com/Arielzz/p/15057000.html
Copyright © 2011-2022 走看看