zoukankan      html  css  js  c++  java
  • Mapreduce实例——MapReduce自定义输出格式

    当面对一些特殊的<key,value>键值对时,要求开发人员继承FileOutputFormat,用于实现一种新的输出格式。同时还需继承RecordWriter,用于实现新输出格式key和value的写入方法。现在我们有某电商数据表cat_group1,包含(分组id,分组名称,分组码,奢侈品标记)四个字段cat_group1的数据内容如下:

    分组id,分组名称,分组码,奢侈品标记
    512,奢侈品,c,1
    675,箱包,1,1
    676,化妆品,2,1
    677,家电,3,1
    501,有机食品,1,0
    502,蔬菜水果,2,0
    503,肉禽蛋奶,3,0
    504,深海水产,4,0
    505,地方特产,5,0
    506,进口食品,6,0
    cat_group1(group_id,group_name,group_code,flag)

    要求把相同奢侈品标记(flag)的数据放入到一个文件里,并且以该字段来命名文件的名称,输出时key与value 以“:”分割,形如"key:value"

    结果输出0.txt和1.txt两文件:

    MyMultipleOutputFormat类

    package mapreduce12;
    
    import java.io.DataOutputStream;
    import java.io.IOException;
    import java.io.PrintWriter;
    import java.io.UnsupportedEncodingException;
    import java.util.HashMap;
    import java.util.Iterator;
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.FSDataOutputStream;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.NullWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.io.Writable;
    import org.apache.hadoop.io.WritableComparable;
    import org.apache.hadoop.io.compress.CompressionCodec;
    import org.apache.hadoop.io.compress.GzipCodec;
    import org.apache.hadoop.mapreduce.OutputCommitter;
    import org.apache.hadoop.mapreduce.RecordWriter;
    import org.apache.hadoop.mapreduce.TaskAttemptContext;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    import org.apache.hadoop.util.ReflectionUtils;
    
    //11. Mapreduce实例——MapReduce自定义输出格式
    public abstract class MyMultipleOutputFormat <K extends WritableComparable<?>,V extends Writable> extends FileOutputFormat<K,V>{
        private MultiRecordWriter writer=null;
        public RecordWriter<K,V> getRecordWriter(TaskAttemptContext job) throws IOException{
            if(writer==null){
                writer=new MultiRecordWriter(job,getTaskOutputPath(job));
            }
            return writer;
        }
        private Path getTaskOutputPath(TaskAttemptContext conf) throws IOException{
            Path workPath=null;
            OutputCommitter committer=super.getOutputCommitter(conf);
            if(committer instanceof FileOutputCommitter){
                workPath=((FileOutputCommitter) committer).getWorkPath();
            }else{
                Path outputPath=super.getOutputPath(conf);
                if(outputPath==null){
                    throw new IOException("Undefined job output-path");
                }
                workPath=outputPath;
            }
            return workPath;
        }
        protected abstract String generateFileNameForKayValue(K key,V value,Configuration conf);
        protected static class LineRecordWriter<K,V> extends RecordWriter<K, V> {
            private static final String utf8 = "UTF-8";
            private static final byte[] newline;
            private PrintWriter tt;
            static {
                try {
                    newline = "\n".getBytes(utf8);
                } catch (UnsupportedEncodingException uee) {
                    throw new IllegalArgumentException("can't find " + utf8 + " encoding");
                }
            }
    
            protected DataOutputStream out;
            private final byte[] keyValueSeparator;
    
            public LineRecordWriter(DataOutputStream out, String keyValueSeparator) {
                this.out = out;
                try {
                    this.keyValueSeparator = keyValueSeparator.getBytes(utf8);
                } catch (UnsupportedEncodingException uee) {
                    throw new IllegalArgumentException("can't find " + utf8 + " encoding");
                }
            }
    
            public LineRecordWriter(DataOutputStream out) {
                this(out, ":");
            }
            private void writeObject(Object o) throws IOException {
                if (o instanceof Text) {
                    Text to = (Text) o;
                    out.write(to.getBytes(), 0, to.getLength());
                } else {
                    out.write(o.toString().getBytes(utf8));
                }
            }
    
            public synchronized void write(K key, V value)
                    throws IOException {
                boolean nullKey = key == null || key instanceof NullWritable;
                boolean nullValue = value == null || value instanceof NullWritable;
                if (nullKey && nullValue) {//
                    return;
                }
                if (!nullKey) {
                    writeObject(key);
                }
                if (!(nullKey || nullValue)) {
                    out.write(keyValueSeparator);
                }
                if (!nullValue) {
                    writeObject(value);
                }
                out.write(newline);
    
            }
    
            public synchronized
            void close(TaskAttemptContext context) throws IOException {
                out.close();
            }
        }
        public class MultiRecordWriter extends RecordWriter<K,V>{
            private HashMap<String,RecordWriter<K,V> >recordWriters=null;
            private TaskAttemptContext job=null;
            private Path workPath=null;
            public MultiRecordWriter(TaskAttemptContext job,Path workPath){
                super();
                this.job=job;
                this.workPath=workPath;
                recordWriters=new HashMap<String,RecordWriter<K,V>>();
    
            }
            public void close(TaskAttemptContext context) throws IOException, InterruptedException{
                Iterator<RecordWriter<K,V>> values=this.recordWriters.values().iterator();
                while(values.hasNext()){
                    values.next().close(context);
                }
                this.recordWriters.clear();
            }
            public void write(K key,V value) throws IOException, InterruptedException{
                String baseName=generateFileNameForKayValue(key ,value,job.getConfiguration());
                RecordWriter<K,V> rw=this.recordWriters.get(baseName);
                if(rw==null){
                    rw=getBaseRecordWriter(job,baseName);
                    this.recordWriters.put(baseName,rw);
                }
                rw.write(key, value);
            }
    
    
            private RecordWriter<K,V> getBaseRecordWriter(TaskAttemptContext job,String baseName)throws IOException,InterruptedException{
                Configuration conf=job.getConfiguration();
                boolean isCompressed=getCompressOutput(job);
                String keyValueSeparator= ":";
                RecordWriter<K,V> recordWriter=null;
                if(isCompressed){
                    Class<?extends CompressionCodec> codecClass=getOutputCompressorClass(job,(Class<?extends CompressionCodec>) GzipCodec.class);
                    CompressionCodec codec=ReflectionUtils.newInstance(codecClass,conf);
                    Path file=new Path(workPath,baseName+codec.getDefaultExtension());
                    FSDataOutputStream fileOut=file.getFileSystem(conf).create(file,false);
                    recordWriter=new LineRecordWriter<K,V>(new DataOutputStream(codec.createOutputStream(fileOut)),keyValueSeparator);
                }else{
                    Path file=new Path(workPath,baseName);
                    FSDataOutputStream fileOut=file.getFileSystem(conf).create(file,false);
                    recordWriter =new LineRecordWriter<K,V>(fileOut,keyValueSeparator);
                }
                return recordWriter;
            }
        }
    }

    FileOutputMR类

    package mapreduce12;
    
    import java.io.IOException;
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.Mapper;
    import org.apache.hadoop.mapreduce.Reducer;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    
    //11. Mapreduce实例——MapReduce自定义输出格式
    public class FileOutputMR {
        public static class TokenizerMapper extends Mapper<Object,Text,Text,Text>{
            private Text val=new Text();
            public void map(Object key,Text value,Context context)throws IOException,InterruptedException{
                String str[]=value.toString().split(",");
                val.set(str[0]+" "+str[1]+" "+str[2]);
                context.write(new Text(str[3]), val);
            }
        }
        public static class IntSumReducer extends Reducer<Text,Text,Text,Text>{
            public void reduce(Text key,Iterable<Text> values,Context context)
                    throws IOException,InterruptedException{
                for(Text val:values){
                    context.write(key,val);
                }
            }
        }
        public static class AlphabetOutputFormat extends MyMultipleOutputFormat<Text,Text>{
            protected String generateFileNameForKayValue(Text key,Text value,Configuration conf){
                return key+".txt";
            }
        }
        public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException{
            Configuration conf=new Configuration();
            Job job=new Job(conf,"FileOutputMR");
            job.setJarByClass(FileOutputMR.class);
            job.setMapperClass(TokenizerMapper.class);
            job.setCombinerClass(IntSumReducer.class);
            job.setReducerClass(IntSumReducer.class);
            job.setOutputKeyClass(Text.class);
            job.setOutputValueClass(Text.class);
            job.setOutputFormatClass(AlphabetOutputFormat.class);
            FileInputFormat.addInputPath(job,new Path("hdfs://192.168.51.100:8020/mymapreduce12/in/cat_group1"));
            FileOutputFormat.setOutputPath(job,new Path("hdfs://192.168.51.100:8020/mymapreduce12/out"));
            System.exit(job.waitForCompletion(true)?0:1);
        }
    }

    结果:

    原理:

    1.输出格式:提供给OutputCollector的键值对会被写到输出文件中,写入的方式由输出格式控制。OutputFormat的功能跟前面描述的InputFormat类很像,Hadoop提供的OutputFormat的实例会把文件写在本地磁盘或HDFS上。在不做设置的情况下,计算结果会以part-000*输出成多个文件,并且输出的文件数量和reduce数量一样,文件内容格式也不能随心所欲。每一个reducer会把结果输出写在公共文件夹中一个单独的文件内,这些文件的命名一般是part-nnnnn,nnnnn是关联到某个reduce任务的partition的id,输出文件夹通过FileOutputFormat.setOutputPath() 来设置。你可以通过具体MapReduce作业的JobConf对象的setOutputFormat()方法来设置具体用到的输出格式。下表给出了已提供的输出格式:

    Hadoop提供了一些OutputFormat实例用于写入文件,基本的(默认的)实例是TextOutputFormat,它会以一行一个键值对的方式把数据写入一个文本文件里。这样后面的MapReduce任务就可以通过KeyValueInputFormat类简单的重新读取所需的输入数据了,而且也适合于人的阅读。还有一个更适合于在MapReduce作业间使用的中间格式,那就是SequenceFileOutputFormat,它可以快速的序列化任意的数据类型到文件中,而对应SequenceFileInputFormat则会把文件反序列化为相同的类型并提交为下一个Mapper的输入数据,方式和前一个Reducer的生成方式一样。NullOutputFormat不会生成输出文件并丢弃任何通过OutputCollector传递给它的键值对,如果你在要reduce()方法中显式的写你自己的输出文件并且不想Hadoop框架输出额外的空输出文件,那这个类是很有用的。

    RecordWriter:这个跟InputFormat中通过RecordReader读取单个记录的实现很相似,OutputFormat类是RecordWriter对象的工厂方法,用来把单个的记录写到文件中,就像是OuputFormat直接写入的一样。

    2.与IntputFormat相似, 当面对一些特殊情况时,如想要Reduce支持多个输出,这时Hadoop本身提供的TextOutputFormat、SequenceFileOutputFormat、NullOutputFormat等肯定是无法满足我们的需求,这时我们需要自定义输出数据格式。类似输入数据格式,自定义输出数据格式同样可以参考下面的步骤:

    (1) 自定义一个继承OutputFormat的类,不过一般继承FileOutputFormat即可;

    (2)实现其getRecordWriter方法,返回一个RecordWriter类型;

    (3)自定义一个继承RecordWriter的类,定义其write方法,针对每个<key,value>写入文件数据;

     

  • 相关阅读:
    (Step by Step)How to setup IP Phone Server(VoIP Server) for free.
    感冒流鼻涕怎么办?
    Robocopy是微软Windows Server 2003资源工具包中众多多用途的实用程序之一(它是基于强大的拷贝程序
    jsp页面:js方法里嵌套java代码(是操作数据库的),如果这个js 方法没被调用,当jsp页面被解析的时候,不管这个js方法有没有被调用这段java代码都会被执行?
    如何在 js 代码中使用 jsp 标签或 Java 代码
    第三范式
    Cannot forward after response has been committed 错误
    安装visio 2010:您的计算机上的Office 2003安装已损坏,安装程序无法继续。请删除或修复office 2003产品并重新运行安装程序
    自己WIN7旗舰版安装 SQLServer2005/2008的一些总结
    建筑基坑工程设计计算与施工(一)
  • 原文地址:https://www.cnblogs.com/Arisf/p/15576881.html
Copyright © 2011-2022 走看看