定理描述:
若
- $y_{n+1}>y_n (n=1,2,cdots)$
- $limlimits_{n ightarrowinfty}y_n=+infty$
- $limlimits_{n ightarrowinfty}frac{x_{n+1}-x_n}{y_{n+1}-y_n}$存在
则 $limlimits_{n ightarrowinfty}frac{x_n}{y_n}=limlimits_{n ightarrowinfty}frac{x_{n+1}-x_n}{y_{n+1}-y_n}$
证:假定$limlimits_{n ightarrowinfty}frac{x_{n+1}-x_n}{y_{n+1}-y_n}=a$由此,并注意到$y_n ightarrow +infty$,可知,对于任给的$varepsilon >0$,存在正整数N,使当n>N时恒有
$mid frac{x_{n+1}-x_n}{y_{n+1}-y_n}-amid <frac{varepsilon}{2} (且y_n>0)$
于是,分数(当n>N时)
$frac{x_{N+2}-x_{N+1}}{y_{N+2}-y_{N+1}},frac{x_{N+3}-x_{N+2}}{y_{N+3}-y_{N+2}}cdots ,frac{x_{n}-x_{n-1}}{y_{n}-y_{n-1}},frac{x_{n+1}-x_{n}}{y_{n+1}-y_{n}}$
都包含在$(a-frac{varepsilon}{2},a+frac{varepsilon}{2})$之间(由极限的定义可直接得出),因为$y_{n+1}>y_n$,所以这些分数的分母都是正数,于是,得
$(a-frac{varepsilon}{2})(y_{N+2}-y_{N+1})<x_{N+2}-x_{N+1}<(a+frac{varepsilon}{2})(y_{N+2}-y_{N+1})$,
$(a-frac{varepsilon}{2})(y_{N+3}-y_{N+2})<x_{N+3}-x_{N+2}<(a+frac{varepsilon}{2})(y_{N+3}-y_{N+2})$,
$vdots$
$(a-frac{varepsilon}{2})(y_{n+1}-y_{n})<x_{n+1}-x_{n}<(a+frac{varepsilon}{2})(y_{n+1}-y_{n})$,
相加之,得
$(a-frac{varepsilon}{2})(y_{n+1}-y_{N+1})<x_{n+1}-x_{N+1}<(a+frac{varepsilon}{2})(y_{n+1}-y_{N+1})$
即$a-frac{varepsilon}{2}<frac{x_{n+1}-x_{N+1}}{y_{n+1}-y_{N+1}}<a+frac{varepsilon}{2}$,所以当n>N时,恒有$mid frac{x_{n+1}-x_{N+1}}{y_{n+1}-y_{N+1}}-amid <frac{varepsilon}{2}$(注意N是确定的).另外我们有(当n>N时)
$frac{x_n}{y_n}-a=frac{x_{N+1}-ay_{N+1}}{y_n}+(1-frac{y_{N+1}}{y_n})(frac{x_{n+1}-x_{N+1}}{y_{n+1}-y_{N+1}}-a)$,
故$mid frac{x_n}{y_n}-amid leqmid frac{x_{N+1}-ay_{N+1}}{y_n}mid +frac{varepsilon}{2}$,
现取正整数N'>N,使当n>N'时,恒有
$mid frac{x_{N+1}-ay_{N+1}}{y_n}mid <frac{varepsilon}{2}$,
于是,当n>N'时,恒有$mid frac{x_n}{y_n}-amid <varepsilon$.
由此可知,$limlimits_{n ightarrow infty}frac{x_n}{y_n}=a=limlimits_{n ightarrowinfty}frac{x_{n+1}-x_n}{y_{n+1}-y_n}$.证毕.
注:条件3中换为$limlimits_{n ightarrowinfty}frac{x_{n+1}-x_n}{y_{n+1}-y_n}=+infty(或-infty)$.,则结论任然成立(也就是极限都不存在)