zoukankan      html  css  js  c++  java
  • ACM题目————网格动物

    Lattice animal is a set of connected sites on a lattice. Lattice animals on a square lattice are especially popular subject of study and are also known as polyominoes. Polyomino is usually represented as a set of sidewise connected squares. Polyomino with n squares is called n-polyomino. In this problem you are to find a number of distinct free n-polyominoes that fit into rectangle w×h. Free polyominoes can be rotated and flipped over, so that their rotations and mirror images are considered to be the same. For example, there are 5 different pentominoes (5-polyominoes) that fit into 2×4 rectangle and 3 different octominoes (8-polyominoes) that fit into 3×3 rectangle.

    epsfbox{p3224.eps}

    Input 

    The input file contains several test cases, one per line. This line consists of 3 integer numbers nw, and h ( 1$ le$n$ le$101$ le$wh$ le$n).

    Output 

    For each one of the test cases, write to the output file a single line with a integer number -- the number of distinct free n-polyominoes that fit into rectangle w×h.

    Sample Input 

    5 1 4
    5 2 4
    5 3 4
    5 5 5
    8 3 3
    

    Sample Output 

    0
    5
    11
    12
    3

    输入n,w,h (1<=n<=10,1<=w,h<=n),求能放在w*h网格里的不同的n连块的个数(注意,平移,旋转,翻转后相同的算作同一种)。例如,2*4里的5连块有5种(第一行),而3*3里的8连块有以下3种(第二行)。

    难点:
    1.以每个格子来扩展。先枚举1连块,在对1连块的每个格子的4个方向进行扩展,枚举2连块,依次类推。
    2.将n连块表示成n个格子的集合,将所有的n连块又表示成集合,判重任务交给set.
    3.判重时要将n连块进行8个方向的旋转,并且每个n连块需要规范化(左下角的格子在(0,0)).
    4.得到n连块后判断是否能放进w*h的网格中,由于n连块已经规范化,得到n连块的格子最大x,y坐标,即能盛下该n连块的长和宽。
    #include <cstdio>
    #include <set>
    #include <algorithm>
    using namespace std;
    #define maxn 10
    // 代表一个网格节点
    typedef struct cell
    {
    	int x, y;	//网格节点的坐标
    
    	// 构造函数
    	cell(int x, int y)
    	{
    		this->x = x;
    		this->y = y;
    	}
    
    	bool operator < (const struct cell& a) const
    	{
    		return x < a.x || (x == a.x && y < a.y);
    	}
    }cell;
    
    // 一个Polyomino就是一堆cell的集合
    typedef set<cell> poly;
    
    // poly_set[i]代表有i个cell的poly集合
    set<poly> poly_set[maxn+1];
    
    // answer[n][w][h]的答案
    int answer[maxn+1][maxn+1][maxn+1];
    
    void gen_poly();
    void check_poly(const poly& this_p, cell& this_c);
    poly normalize(poly& p);
    poly rotate(poly& p);
    poly flip(poly& p);
    
    
    int main()
    {
    	// 生成所有poly
    	gen_poly();
    
    //	printf("here
    ");
    	int n, w, h;
    	while(scanf("%d %d %d", &n, &w, &h) == 3)
    	{
    		printf("%d
    ", answer[n][w][h]);
    	}
    	return 0;
    }
    
    int dic_x[4] = {-1,0,1,0};
    int dic_y[4] = {0,1,0,-1};
    
    // 生成所有poly
    void gen_poly()
    {
    	for(int i = 1; i <= maxn; i++)
    		poly_set[i] = set<poly>();
    
    	// 先生成有1个cell的poly
    	poly p1;
    	p1.insert(cell(0,0));
    	poly_set[1].insert(p1);
    
    	// 分别根据有i-1个cell的poly集合来生成有i个cell的poly集合
    	for(int i = 2; i <= maxn; i++)
    	{
    		// 对每个poly中的每个cell尝试在不同的四个方向增加一个cell
    		for(set<poly>::iterator p = poly_set[i-1].begin(); p != poly_set[i-1].end(); p++)
    		{
    			for(poly::const_iterator q = p->begin(); q != p->end(); q++)
    			{
    				for(int j = 0; j < 4; j++)
    				{
    					cell new_c(q->x+dic_x[j], q->y+dic_y[j]);
    //					cell new_c;
    					if(p->find(new_c) == p->end())
    					{
    						// 检查形成的这个poly是否存在,如果不存在就加入
    						check_poly(*p, new_c);
    					}
    
    				}
    			}
    		}
    	}
    
    	// 对所有n,w,h生成答案
    	for(int i = 1; i <= maxn; i++)
    	{
    		for(int w = 1; w <= i; w++)
    		{
    			for(int h = 1; h <= i; h++)
    			{
    				int count = 0;
    				for(set<poly>::iterator p = poly_set[i].begin(); p != poly_set[i].end(); p++)
                    		{
    					int max_x = p->begin()->x, max_y = p->begin()->y;
    					for(poly::iterator q = p->begin(); q != p->end(); q++)
    					{
    						if(max_x < q->x)
    							max_x = q->x;
    						if(max_y < q->y)
    							max_y = q->y;
    					}
    
    					if(min(max_x, max_y) < min(w, h) && max(max_x, max_y) < max(w, h))
    					{
    						count++;
    					}
    				}
    /*				if(count != 0)
    					printf("answer[%d][%d][%d] = %d
    ", i, w, h, count);
    */				answer[i][w][h] = count;
    			}
    		}
    	}
    }
    
    
    // 检查形成的这个poly加上这个cell是否存在,如果不存在就加入
    void check_poly(const poly& this_p, cell& this_c)
    {
    	poly p = this_p;
    	p.insert(this_c);
    	// 规范化到最小点为(0,0)
    	p = normalize(p);
    
    	int n = p.size();
    	// 检查旋转的8个方向是否存在,如果不存在就加入到poly集合
    	for(int i = 0; i < 4; i++)
    	{
    		if(poly_set[n].find(p) != poly_set[n].end())
    			return;
    		// 对该poly向右旋转90度
    		p = rotate(p);
    	}
    	// 将该poly向下反转180度
    	p = flip(p);
    	for(int i = 0; i < 4; i++)
            {
                    if(poly_set[n].find(p) != poly_set[n].end())
                            return;
                    // 对该poly向右旋转90度
                    p = rotate(p);
            }
    	poly_set[n].insert(p);
    
    }
    
    // 规范化到最小点为(0,0)
    poly normalize(poly& p)
    {
    	poly this_p;
    	int min_x = p.begin()->x, min_y = p.begin()->y;
    	for(poly::iterator q = p.begin(); q != p.end(); q++)
    	{
    		if(q->x < min_x)
    			min_x = q->x;
    		if(q->y < min_y)
    			min_y = q->y;
    	}
    	for(poly::iterator q = p.begin(); q != p.end(); q++)
            {
    		this_p.insert(cell(q->x-min_x,q->y-min_y));
            }
    	return this_p;
    }
    
    // 对该poly向右旋转90度
    poly rotate(poly& p)
    {
    	poly this_p;
    	for(poly::iterator q = p.begin(); q != p.end(); q++)
            {
                    this_p.insert(cell(q->y,-q->x));
            }
            return normalize(this_p);
    }
    
    
    // 将该poly向下反转180度
    poly flip(poly& p)
    {
    	poly this_p;
            for(poly::iterator q = p.begin(); q != p.end(); q++)
            {
                    this_p.insert(cell(q->x,-q->y));
            }
            return normalize(this_p);
    }
    
    低调做人,高调做事。
  • 相关阅读:
    本地网络硬盘之在本地使用MsnSkydriver
    编写代码生成器自动赋值方法
    向Html动态加载内容(动态加载脚本,css)
    巧用asp.net(1):自动生成页面头部信息
    Ruby On Rails各版本需注意
    添加强命名程序集
    Javascript写入Html
    SQL Function (SQL自定义函数)
    (译)SDL.NET Surfaces 相关介绍
    用CSS设置Table的细边框的几种方法
  • 原文地址:https://www.cnblogs.com/Asimple/p/5546047.html
Copyright © 2011-2022 走看看