zoukankan      html  css  js  c++  java
  • tensorflow weight_variable going

     1 # coding: utf-8
     2 import tensorflow as tf
     3 from tensorflow.examples.tutorials.mnist import input_data
     4 
     5 
     6 def weight_variable(shape):
     7     initial = tf.truncated_normal(shape, stddev=0.1)
     8     return tf.Variable(initial)
     9 
    10 
    11 def bias_variable(shape):
    12     initial = tf.constant(0.1, shape=shape)
    13     return tf.Variable(initial)
    14 
    15 
    16 def conv2d(x, W):
    17     return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
    18 
    19 
    20 def max_pool_2x2(x):
    21     return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
    22                           strides=[1, 2, 2, 1], padding='SAME')
    23 
    24 
    25 if __name__ == '__main__':
    26     # 读入数据
    27     mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
    28     # x为训练图像的占位符、y_为训练图像标签的占位符
    29     x = tf.placeholder(tf.float32, [None, 784])
    30     y_ = tf.placeholder(tf.float32, [None, 10])
    31 
    32     # 将单张图片从784维向量重新还原为28x28的矩阵图片
    33     x_image = tf.reshape(x, [-1, 28, 28, 1])
    34 
    35     # 第一层卷积层
    36     W_conv1 = weight_variable([5, 5, 1, 32])
    37     b_conv1 = bias_variable([32])
    38     h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
    39     h_pool1 = max_pool_2x2(h_conv1)
    40 
    41     # 第二层卷积层
    42     W_conv2 = weight_variable([5, 5, 32, 64])
    43     b_conv2 = bias_variable([64])
    44     h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
    45     h_pool2 = max_pool_2x2(h_conv2)
    46 
    47     # 全连接层,输出为1024维的向量
    48     W_fc1 = weight_variable([7 * 7 * 64, 1024])
    49     b_fc1 = bias_variable([1024])
    50     h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
    51     h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
    52     # 使用Dropout,keep_prob是一个占位符,训练时为0.5,测试时为1
    53     keep_prob = tf.placeholder(tf.float32)
    54     h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
    55 
    56     # 把1024维的向量转换成10维,对应10个类别
    57     W_fc2 = weight_variable([1024, 10])
    58     b_fc2 = bias_variable([10])
    59     y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
    60 
    61     # 我们不采用先Softmax再计算交叉熵的方法,而是直接用tf.nn.softmax_cross_entropy_with_logits直接计算
    62     cross_entropy = tf.reduce_mean(
    63         tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
    64     # 同样定义train_step
    65     train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
    66 
    67     # 定义测试的准确率
    68     correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
    69     accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    70 
    71     sess = tf.InteractiveSession()
    72     sess.run(tf.global_variables_initializer())
    73 
    74     for i in range(20000):
    75         batch = mnist.train.next_batch(50)
    76         # 每100步报告一次在验证集上的准确度
    77         if i % 100 == 0:
    78             train_accuracy = accuracy.eval(feed_dict={
    79                 x: batch[0], y_: batch[1], keep_prob: 1.0})
    80             print("step %d, training accuracy %g" % (i, train_accuracy))
    81         train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
    82 
    83     # 训练结束后报告在测试集上的准确度
    84     print("test accuracy %g" % accuracy.eval(feed_dict={
    85         x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))

    #coding: utf-8
    from tensorflow.examples.tutorials.mnist import input_data
    import scipy.misc
    import os

    # 读取MNIST数据集。如果不存在会事先下载。
    mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

    # 我们把原始图片保存在MNIST_data/raw/文件夹下
    # 如果没有这个文件夹会自动创建
    save_dir = 'MNIST_data/raw/'
    if os.path.exists(save_dir) is False:
    os.makedirs(save_dir)

    # 保存前20张图片
    for i in range(20):
    # 请注意,mnist.train.images[i, :]就表示第i张图片(序号从0开始)
    image_array = mnist.train.images[i, :]
    # TensorFlow中的MNIST图片是一个784维的向量,我们重新把它还原为28x28维的图像。
    image_array = image_array.reshape(28, 28)
    # 保存文件的格式为 mnist_train_0.jpg, mnist_train_1.jpg, ... ,mnist_train_19.jpg
    filename = save_dir + 'mnist_train_%d.jpg' % i
    # 将image_array保存为图片
    # 先用scipy.misc.toimage转换为图像,再调用save直接保存。
    scipy.misc.toimage(image_array, cmin=0.0, cmax=1.0).save(filename)

    print('Please check: %s ' % save_dir)

  • 相关阅读:
    位运算的应用
    MySql的自增主键以及TEXT数据类型使用
    MaxDos启动盘拆解
    QT预备式(包含MySql配置)未完成……
    关于Services.exe开机CPU内存使用暴增解决方案
    Windows Upnp 服务补丁——UpnpFix V1.0
    Memory Ordering
    "FoxitReaderOCX.ocx failed to load" 问题解决方案
    LameDropXPd V2.0 (L.A.M.E 3.97) 完美汉化版
    编译QT的MySql驱动问题及解决方案
  • 原文地址:https://www.cnblogs.com/Asuphy/p/10975925.html
Copyright © 2011-2022 走看看