1 # coding: utf-8 2 import tensorflow as tf 3 from tensorflow.examples.tutorials.mnist import input_data 4 5 6 def weight_variable(shape): 7 initial = tf.truncated_normal(shape, stddev=0.1) 8 return tf.Variable(initial) 9 10 11 def bias_variable(shape): 12 initial = tf.constant(0.1, shape=shape) 13 return tf.Variable(initial) 14 15 16 def conv2d(x, W): 17 return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') 18 19 20 def max_pool_2x2(x): 21 return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], 22 strides=[1, 2, 2, 1], padding='SAME') 23 24 25 if __name__ == '__main__': 26 # 读入数据 27 mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) 28 # x为训练图像的占位符、y_为训练图像标签的占位符 29 x = tf.placeholder(tf.float32, [None, 784]) 30 y_ = tf.placeholder(tf.float32, [None, 10]) 31 32 # 将单张图片从784维向量重新还原为28x28的矩阵图片 33 x_image = tf.reshape(x, [-1, 28, 28, 1]) 34 35 # 第一层卷积层 36 W_conv1 = weight_variable([5, 5, 1, 32]) 37 b_conv1 = bias_variable([32]) 38 h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) 39 h_pool1 = max_pool_2x2(h_conv1) 40 41 # 第二层卷积层 42 W_conv2 = weight_variable([5, 5, 32, 64]) 43 b_conv2 = bias_variable([64]) 44 h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) 45 h_pool2 = max_pool_2x2(h_conv2) 46 47 # 全连接层,输出为1024维的向量 48 W_fc1 = weight_variable([7 * 7 * 64, 1024]) 49 b_fc1 = bias_variable([1024]) 50 h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64]) 51 h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) 52 # 使用Dropout,keep_prob是一个占位符,训练时为0.5,测试时为1 53 keep_prob = tf.placeholder(tf.float32) 54 h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) 55 56 # 把1024维的向量转换成10维,对应10个类别 57 W_fc2 = weight_variable([1024, 10]) 58 b_fc2 = bias_variable([10]) 59 y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2 60 61 # 我们不采用先Softmax再计算交叉熵的方法,而是直接用tf.nn.softmax_cross_entropy_with_logits直接计算 62 cross_entropy = tf.reduce_mean( 63 tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv)) 64 # 同样定义train_step 65 train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) 66 67 # 定义测试的准确率 68 correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1)) 69 accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) 70 71 sess = tf.InteractiveSession() 72 sess.run(tf.global_variables_initializer()) 73 74 for i in range(20000): 75 batch = mnist.train.next_batch(50) 76 # 每100步报告一次在验证集上的准确度 77 if i % 100 == 0: 78 train_accuracy = accuracy.eval(feed_dict={ 79 x: batch[0], y_: batch[1], keep_prob: 1.0}) 80 print("step %d, training accuracy %g" % (i, train_accuracy)) 81 train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}) 82 83 # 训练结束后报告在测试集上的准确度 84 print("test accuracy %g" % accuracy.eval(feed_dict={ 85 x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
#coding: utf-8
from tensorflow.examples.tutorials.mnist import input_data
import scipy.misc
import os
# 读取MNIST数据集。如果不存在会事先下载。
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
# 我们把原始图片保存在MNIST_data/raw/文件夹下
# 如果没有这个文件夹会自动创建
save_dir = 'MNIST_data/raw/'
if os.path.exists(save_dir) is False:
os.makedirs(save_dir)
# 保存前20张图片
for i in range(20):
# 请注意,mnist.train.images[i, :]就表示第i张图片(序号从0开始)
image_array = mnist.train.images[i, :]
# TensorFlow中的MNIST图片是一个784维的向量,我们重新把它还原为28x28维的图像。
image_array = image_array.reshape(28, 28)
# 保存文件的格式为 mnist_train_0.jpg, mnist_train_1.jpg, ... ,mnist_train_19.jpg
filename = save_dir + 'mnist_train_%d.jpg' % i
# 将image_array保存为图片
# 先用scipy.misc.toimage转换为图像,再调用save直接保存。
scipy.misc.toimage(image_array, cmin=0.0, cmax=1.0).save(filename)
print('Please check: %s ' % save_dir)