题意:
求 (sum_{i=1}^{n} sum_{j=1}^{m} 2*gcd(i,j)+1)
=> (sum_{i=1}^{n} sum_{j=1}^{m} 2*sum_{dmid gcd(i,j)}phi(d))
=> (2*sum_{d}^{min(n,m)}phi(d) lfloor {nover d}
floor lfloor {mover d}
floor) - n*m;
然后筛欧拉函数即可;
#include<iostream>
#include<cstdio>
using namespace std;
const int N=1e5+7;
int n,m,cnt;
long long ans;
long long prime[N],is_prime[N],phi[N];
void get_phi(){
phi[1]=1;
for(int i=2;i<=n;i++){
if(!is_prime[i]){
prime[++cnt]=i;
phi[i]=i-1;
}
for(int j=1;j<=cnt&&i*prime[j]<=n;j++){
// cout<<"kkk"<<"
";
is_prime[i*prime[j]]=1;
if(i%prime[j]==0){
// cout<<i*prime[j]<<"
";
phi[i*prime[j]]=phi[i]*prime[j];
break;
}else{
phi[i*prime[j]]=phi[i]*(prime[j]-1);
}
}
}
}
int main(){
scanf("%d%d",&n,&m);
if(n<m)swap(n,m);
get_phi();
// return 0;
for(int i=1;i<=m;i++){
ans+=1LL*phi[i]*1LL*(n/i)*(m/i);
}
ans=2*ans-1LL*n*m;
cout<<ans;
}