zoukankan      html  css  js  c++  java
  • 一个openMP编程处理图像的示例

    一个openMP编程处理图像的示例:     

         从硬盘读入两幅图像,对这两幅图像分别提取特征点,特征点匹配,最后将图像与匹配特征点画出来。理解该例子需要一些图像处理的基本知识,我不在此详细介绍。另外,编译该例需要opencv,我用的版本是2.3.1,关于opencv的安装与配置也不在此介绍。我们首先来看传统串行编程的方式。

    复制代码
     1 #include "opencv2/highgui/highgui.hpp"
    2 #include "opencv2/features2d/features2d.hpp"
    3 #include <iostream>
    4 #include <omp.h>
    5 int main( ){
    6 cv::SurfFeatureDetector detector( 400 );
    7 cv::SurfDescriptorExtractor extractor;
    8 cv::BruteForceMatcher<cv::L2<float> > matcher;
    9 std::vector< cv::DMatch > matches;
    10 cv::Mat im0,im1;
    11 std::vector<cv::KeyPoint> keypoints0,keypoints1;
    12 cv::Mat descriptors0, descriptors1;
    13 double t1 = omp_get_wtime( );
    14 //先处理第一幅图像
    15 im0 = cv::imread("rgb0.jpg", CV_LOAD_IMAGE_GRAYSCALE );
    16 detector.detect( im0, keypoints0);
    17 extractor.compute( im0,keypoints0,descriptors0);
    18 std::cout<<"find "<<keypoints0.size()<<"keypoints in im0"<<std::endl;
    19 //再处理第二幅图像
    20 im1 = cv::imread("rgb1.jpg", CV_LOAD_IMAGE_GRAYSCALE );
    21 detector.detect( im1, keypoints1);
    22 extractor.compute( im1,keypoints1,descriptors1);
    23 std::cout<<"find "<<keypoints1.size()<<"keypoints in im1"<<std::endl;
    24 double t2 = omp_get_wtime( );
    25 std::cout<<"time: "<<t2-t1<<std::endl;
    26 matcher.match( descriptors0, descriptors1, matches );
    27 cv::Mat img_matches;
    28 cv::drawMatches( im0, keypoints0, im1, keypoints1, matches, img_matches );
    29 cv::namedWindow("Matches",CV_WINDOW_AUTOSIZE);
    30 cv::imshow( "Matches", img_matches );
    31 cv::waitKey(0);
    32 return 1;
    33 }
    复制代码

    很明显,读入图像,提取特征点与特征描述子这部分可以改为并行执行,修改如下:

    复制代码
     1 #include "opencv2/highgui/highgui.hpp"
    2 #include "opencv2/features2d/features2d.hpp"
    3 #include <iostream>
    4 #include <vector>
    5 #include <omp.h>
    6 int main( ){
    7 int imNum = 2;
    8 std::vector<cv::Mat> imVec(imNum);
    9 std::vector<std::vector<cv::KeyPoint>>keypointVec(imNum);
    10 std::vector<cv::Mat> descriptorsVec(imNum);
    11 cv::SurfFeatureDetector detector( 400 ); cv::SurfDescriptorExtractor extractor;
    12 cv::BruteForceMatcher<cv::L2<float> > matcher;
    13 std::vector< cv::DMatch > matches;
    14 char filename[100];
    15 double t1 = omp_get_wtime( );
    16 #pragma omp parallel for
    17 for (int i=0;i<imNum;i++){
    18 sprintf(filename,"rgb%d.jpg",i);
    19 imVec[i] = cv::imread( filename, CV_LOAD_IMAGE_GRAYSCALE );
    20 detector.detect( imVec[i], keypointVec[i] );
    21 extractor.compute( imVec[i],keypointVec[i],descriptorsVec[i]);
    22 std::cout<<"find "<<keypointVec[i].size()<<"keypoints in im"<<i<<std::endl;
    23 }
    24 double t2 = omp_get_wtime( );
    25 std::cout<<"time: "<<t2-t1<<std::endl;
    26 matcher.match( descriptorsVec[0], descriptorsVec[1], matches );
    27 cv::Mat img_matches;
    28 cv::drawMatches( imVec[0], keypointVec[0], imVec[1], keypointVec[1], matches, img_matches );
    29 cv::namedWindow("Matches",CV_WINDOW_AUTOSIZE);
    30 cv::imshow( "Matches", img_matches );
    31 cv::waitKey(0);
    32 return 1;
    33 }
    复制代码

    两种执行方式做比较,时间为:2.343秒v.s. 1.2441秒

    在上面代码中,为了改成适合#pragma omp parallel for执行的方式,我们用了STL的vector来分别存放两幅图像、特征点与特征描述子,但在某些情况下,变量可能不适合放在vector里,此时应该怎么办呢?这就要用到openMP的另一个工具,section,代码如下:

    复制代码
     1 #include "opencv2/highgui/highgui.hpp"
    2 #include "opencv2/features2d/features2d.hpp"
    3 #include <iostream>
    4 #include <omp.h>
    5 int main( ){
    6 cv::SurfFeatureDetector detector( 400 ); cv::SurfDescriptorExtractor extractor;
    7 cv::BruteForceMatcher<cv::L2<float> > matcher;
    8 std::vector< cv::DMatch > matches;
    9 cv::Mat im0,im1;
    10 std::vector<cv::KeyPoint> keypoints0,keypoints1;
    11 cv::Mat descriptors0, descriptors1;
    12 double t1 = omp_get_wtime( );
    13 #pragma omp parallel sections
    14 {
    15 #pragma omp section
    16 {
    17 std::cout<<"processing im0"<<std::endl;
    18 im0 = cv::imread("rgb0.jpg", CV_LOAD_IMAGE_GRAYSCALE );
    19 detector.detect( im0, keypoints0);
    20 extractor.compute( im0,keypoints0,descriptors0);
    21 std::cout<<"find "<<keypoints0.size()<<"keypoints in im0"<<std::endl;
    22 }
    23 #pragma omp section
    24 {
    25 std::cout<<"processing im1"<<std::endl;
    26 im1 = cv::imread("rgb1.jpg", CV_LOAD_IMAGE_GRAYSCALE );
    27 detector.detect( im1, keypoints1);
    28 extractor.compute( im1,keypoints1,descriptors1);
    29 std::cout<<"find "<<keypoints1.size()<<"keypoints in im1"<<std::endl;
    30 }
    31 }
    32 double t2 = omp_get_wtime( );
    33 std::cout<<"time: "<<t2-t1<<std::endl;
    34 matcher.match( descriptors0, descriptors1, matches );
    35 cv::Mat img_matches;
    36 cv::drawMatches( im0, keypoints0, im1, keypoints1, matches, img_matches );
    37 cv::namedWindow("Matches",CV_WINDOW_AUTOSIZE);
    38 cv::imshow( "Matches", img_matches );
    39 cv::waitKey(0);
    40 return 1;
    41 }
    复制代码

    上面代码中,我们首先用#pragma omp parallel sections将要并行执行的内容括起来,在它里面,用了两个#pragma omp section,每个里面执行了图像读取、特征点与特征描述子提取。将其简化为伪代码形式即为:

    复制代码
     1 #pragma omp parallel sections
    2 {
    3 #pragma omp section
    4 {
    5 function1();
    6 }
    7   #pragma omp section
    8 {
    9 function2();
    10 }
    11 }
    复制代码

    意思是:parallel sections里面的内容要并行执行,具体分工上,每个线程执行其中的一个section,如果section数大于线程数,那么就等某线程执行完它的section后,再继续执行剩下的section。在时间上,这种方式与人为用vector构造for循环的方式差不多,但无疑该种方式更方便,而且在单核机器上或没有开启openMP的编译器上,该种方式不需任何改动即可正确编译,并按照单核串行方式执行。

    以上分享了这两天关于openMP的一点学习体会,其中难免有错误,欢迎指正。另外的一点疑问是,看到各种openMP教程里经常用到private,shared等来修饰变量,这些修饰符的意义和作用我大致明白,但在我上面所有例子中,不加这些修饰符似乎并不影响运行结果,不知道这里面有哪些讲究。

    在写上文的过程中,参考了包括以下两个网址在内的多个地方的资源,不再一 一列出,在此一并表示感谢。

  • 相关阅读:
    如何制作a2sd+
    WinForm/Silverlight多线程编程中如何更新UI控件的值
    c#如何操作cookie
    Windows Mobile CookieContainer
    Microsoft.Practices.EnterpriseLibrary.Data 数据库操作
    获取手机卡imei和imsi信息
    winform 分页控件
    asp.net 导出数据到Excle
    asp.net异步调用
    shell脚本中常用命令
  • 原文地址:https://www.cnblogs.com/wishchin/p/9200375.html
Copyright © 2011-2022 走看看