zoukankan      html  css  js  c++  java
  • 【Lintcode】076.Longest Increasing Subsequence

    题目:

    Given a sequence of integers, find the longest increasing subsequence (LIS).

    You code should return the length of the LIS.

    Clarification

    What's the definition of longest increasing subsequence?

    • The longest increasing subsequence problem is to find a subsequence of a given sequence in which the subsequence's elements are in sorted order, lowest to highest, and in which the subsequence is as long as possible. This subsequence is not necessarily contiguous, or unique.

    • https://en.wikipedia.org/wiki/Longest_increasing_subsequence

    Example

    For [5, 4, 1, 2, 3], the LIS is [1, 2, 3], return 3
    For [4, 2, 4, 5, 3, 7], the LIS is [2, 4, 5, 7], return 4

    题解:

      For dp[i], dp[i] is max(dp[j]+1, dp[i]), for all j < i and nums[j] < nums[i].

    Solution 1 ()

    class Solution {
    public:
        int longestIncreasingSubsequence(vector<int> nums) {
            if (nums.empty()) {
                return 0;
            }
            vector<int> dp(nums.size(), 1);
            int res = 1;
            for (int i = 1; i < nums.size(); ++i) {
                for (int j = 0; j < i; ++j) {
                    if (nums[j] < nums[i]) {
                        dp[i] = max(dp[i], dp[j] + 1);
                    }
                }
                res = max(dp[i], res);
            }
            return res;
        }
    };

    Solution 2 ()

    class Solution {
    public:
        /**
         * @param nums: The integer array
         * @return: The length of LIS (longest increasing subsequence)
         */
        int longestIncreasingSubsequence(vector<int> nums) {
            vector<int> res;
            for(int i=0; i<nums.size(); i++) {
                auto it = std::lower_bound(res.begin(), res.end(), nums[i]);
                if(it==res.end()) res.push_back(nums[i]);
                else *it = nums[i];
            }
            return res.size();
        }
    };

    Solution 3 ()

    class Solution {
    public:
        int longestIncreasingSubsequence(vector<int> nums) {
            if (nums.empty()) {
                return 0;
            }
            vector<int> tmp;
            tmp.push_back(nums[0]);
            for (auto num : nums) {
                if (num < tmp[0]) {
                    tmp[0] = num;
                } else if (num > tmp.back()) {
                    tmp.push_back(num);
                } else {
                    int begin = 0, end = tmp.size();
                    while (begin < end) {
                        int mid = begin + (end - begin) / 2;
                        if (tmp[mid] < num) {
                            begin = mid + 1;
                        } else {
                            end = mid;
                        }
                    }
                    tmp[end] = num;
                }
            }
            return tmp.size();
        }
    };
  • 相关阅读:
    JS 反射机制及 Reflect 详解
    React Hooks
    深入理解 React setState
    React 函数组件和类组件的区别
    tsconfig.json 编译器配置大全
    React TS 解决不声明变量类型时的报错问题
    JSX onClick 和 HTML onclick 的区别
    深入理解 ES6 Generator
    JS 算法与数据结构之队列
    深入理解 ES6 Proxy
  • 原文地址:https://www.cnblogs.com/Atanisi/p/6883116.html
Copyright © 2011-2022 走看看