zoukankan      html  css  js  c++  java
  • POJ3155 Hard Life

    Time Limit: 8000MS   Memory Limit: 65536K
    Total Submissions: 8482   Accepted: 2461
    Case Time Limit: 2000MS   Special Judge

    Description

    John is a Chief Executive Officer at a privately owned medium size company. The owner of the company has decided to make his son Scott a manager in the company. John fears that the owner will ultimately give CEO position to Scott if he does well on his new manager position, so he decided to make Scott’s life as hard as possible by carefully selecting the team he is going to manage in the company.

    John knows which pairs of his people work poorly in the same team. John introduced a hardness factor of a team — it is a number of pairs of people from this team who work poorly in the same team divided by the total number of people in the team. The larger is the hardness factor, the harder is this team to manage. John wants to find a group of people in the company that are hardest to manage and make it Scott’s team. Please, help him.

    In the example on the picture the hardest team consists of people 1, 2, 4, and 5. Among 4 of them 5 pairs work poorly in the same team, thus hardness factor is equal to 54. If we add person number 3 to the team then hardness factor decreases to 65.

    Input

    The first line of the input file contains two integer numbers n and m (1 ≤ n ≤ 100, 0 ≤ m ≤ 1000). Here n is a total number of people in the company (people are numbered from 1 to n), and m is the number of pairs of people who work poorly in the same team. Next m lines describe those pairs with two integer numbers ai and bi (1 ≤ aibi ≤ nai ≠ bi) on a line. The order of people in a pair is arbitrary and no pair is listed twice.

    Output

    Write to the output file an integer number k (1 ≤ k ≤ n) — the number of people in the hardest team, followed by k lines listing people from this team in ascending order. If there are multiple teams with the same hardness factor then write any one.

    Sample Input

    sample input #1
    5 6
    1 5
    5 4
    4 2
    2 5
    1 2
    3 1
    
    sample input #2
    4 0

    Sample Output

    sample output #1
    4
    1
    2
    4
    5
    
    sample output #2
    1
    1

    Hint

    Note, that in the last example any team has hardness factor of zero, and any non-empty list of people is a valid answer.

    Source

    关于这道题《最小割模型在信息学竞赛中的应用》,这篇论文里有讲到,而且解释给的很详细,可以去翻论文。
      1 #include <algorithm>
      2 #include <iostream>
      3 #include <cstring>
      4 #include <cstdio>
      5 #include <queue>
      6 #include <cmath>
      7 const double eqs = 1e-8 ;
      8 const int N = 100 + 11 , M = 1000 + 11 ;
      9 using namespace std ;
     10 int n , m , head[N] , cnt , s , t , du[N] , num , cur[N] , node[N] ;
     11 struct ide
     12 {
     13     int u , v ;
     14 } edge[M] ;
     15 struct id
     16 {
     17     int  fro ,nxt , to ; double w ; 
     18 } links[140000] ;
     19 
     20 void add( int u , int v  , double val )
     21 {
     22     links[++cnt].fro = u , links[cnt].to = v ;
     23     links[cnt].nxt = head[u] , links[cnt].w = val , head[u] = cnt ; 
     24 }
     25 
     26 
     27 void Init( )
     28 {
     29     scanf( "%d%d" , &n , &m ) ; s = 0 , t = n + 1 ; 
     30     for( int x = 1 ; x <= m ; ++x )
     31     {
     32         scanf( "%d%d" , &edge[x].u , &edge[x].v ) ;
     33         ++du[edge[x].u] , ++du[edge[x].v] ;    
     34     }
     35 }
     36 
     37 int dis[N] ; queue< int > Q ;
     38 bool bfs( )
     39 {
     40     memset( dis , -1 , sizeof(dis) ) ;
     41     dis[s] = 0 ; Q.push( s ) ;
     42     while(  !Q.empty( ) )
     43     {
     44         int u = Q.front( ) ; Q.pop( ) ;
     45         for( int i = head[u] ; ~i ; i = links[i].nxt )
     46         {
     47             int v = links[i].to ;
     48             if( dis[v] < 0 && fabs( links[i].w ) > eqs )
     49             {
     50                 dis[v] = dis[u] + 1 ;
     51                 Q.push( v ) ;
     52             }
     53         }
     54     }
     55     return dis[t] != -1 ;
     56 }
     57 
     58 
     59 double dfs( int u , double f )
     60 {
     61     if( u == t ) return f ;
     62     double an , cost = 0.00 ;
     63     for( int i = cur[u] ; ~i ; i = links[i].nxt )
     64     {
     65         int v = links[i].to ;
     66         if( dis[v] != dis[u] + 1 ) continue ;
     67         an = dfs( v , min( f - cost , links[i].w ) ) ;
     68         cost += an ; links[i^1].w += an , links[i].w -= an ;
     69         if( fabs( links[i].w ) > eqs ) cur[u] = i ;
     70         if( fabs( cost - f ) < eqs ) return cost ;
     71     }
     72     if( fabs( cost ) < eqs ) dis[u] = -1 ;
     73     return cost ;
     74 }
     75 
     76 double Dinic( )
     77 {
     78     double ans = 0.00 ;
     79     while( bfs( ) )
     80     {
     81         for( int x = s ; x <= t ; ++x ) cur[x] = head[x] ; 
     82         ans += dfs( s , 20000011 ) ;
     83     }    
     84     //cout<<ans<<endl;
     85     return ans ;
     86 }
     87 
     88 
     89 double check( double mid )
     90 {
     91     //cout<<mid<<endl;
     92     cnt = -1 ; memset( head , -1 , sizeof(head) ) ; 
     93     for( int i = 1 ; i <= n ; ++i ) 
     94     {    add( s , i , m*1.0 ) , add( i , s , 0 ) ; 
     95         add( i , t , m + 2 * mid - du[i] ) ;
     96         add( t , i , 0 ) ;
     97     }
     98     for( int i = 1 ; i <= m ; ++i )
     99     {
    100         add( edge[i].u , edge[i].v , 1.0 ) ; 
    101         add( edge[i].v , edge[i].u , 0.0 ) ; 
    102         add( edge[i].v , edge[i].u , 1.0 ) ; 
    103         add( edge[i].u , edge[i].v , 0.0 ) ; 
    104     }
    105     return Dinic(  ) ;
    106 }
    107 
    108 bool vis[N] ;
    109 void flow( int u )
    110 {    
    111     vis[u] = true ;
    112     if( u >= 1 && u <= n ) node[++num] = u ;
    113     for( int i = head[u] ; ~i ; i = links[i].nxt )
    114         if( links[i].w > 0 && !vis[links[i].to] ) flow( links[i].to ) ;    
    115 }
    116 
    117 
    118 void Solve( )
    119 {
    120     double l = 0 , r = m , minn = 1.00 / n / n ;//cout<<l<<" "<<r<<endl;
    121     while( r - l >= minn )
    122     {
    123         double  mid = ( r + l ) / 2 ;
    124         double hg = check( mid ) ; //cout<<l<<" "<<hg<<endl ;
    125         if( ( m * n - hg )* 0.5 > eqs ) l = mid ;
    126         else r = mid ;
    127     
    128     }
    129     
    130     check( l ) ; num = 0 ; 
    131     flow( s ) ; if( num == 0 ) node[++num] = 1 ;
    132     sort( node + 1 , node + 1 + num ) ;
    133     printf( "%d
    " , num ) ;
    134     for( int x = 1 ; x <= num ; ++x ) printf( "%d
    " , node[x] ) ;
    135 }
    136 
    137 
    138 int main( )
    139 {
    140 //    freopen( "poj3155.in" , "r" , stdin ) ;
    141 //    freopen( "poj3155.out" , "w" , stdout ) ;
    142     Init( ) ;
    143     Solve( ) ;
    144 //    fclose( stdin ) ;
    145 //    fclose( stdout ) ;
    146     return 0 ;
    147 }
     
  • 相关阅读:
    振动传感器
    水银开关式碰撞传感器
    倾斜传感器
    光敏传感器
    激光传感器的使用
    html字符串 转 json
    浏览器播放视频加快进功能
    处理箭头函数单个参数括号规则冲突
    VUE-directive指令之语法、引用、钩子函数、参数
    win10系统自动升级怎么还原到以前的系统
  • 原文地址:https://www.cnblogs.com/Ateisti/p/6032439.html
Copyright © 2011-2022 走看看