zoukankan      html  css  js  c++  java
  • uva 11134 fabled rooks (贪心)——yhx

    We would like to place n rooks, 1  n  5000, on a n  n
    board subject to the following restrictions
    • The i-th rook can only be placed within the rectan-
    gle given by its left-upper corner (xli; yli) and its right-
    lower corner (xri; yri), where 1  i  n, 1  xli 
    xri  n, 1  yli  yri  n.
    • No two rooks can attack each other, that is no two rooks
    can occupy the same column or the same row.
    Input
    The input consists of several test cases. The rst line of each
    of them contains one integer number, n, the side of the board. n lines follow giving the rectangles
    where the rooks can be placed as described above. The i-th line among them gives xli, yli, xri, and
    yri. The input le is terminated with the integer `0' on a line by itself.
    Output
    Your task is to nd such a placing of rooks that the above conditions are satis ed and then output n
    lines each giving the position of a rook in order in which their rectangles appeared in the input. If there
    are multiple solutions, any one will do. Output `IMPOSSIBLE' if there is no such placing of the rooks.


    因为行和列并没有什么关系,所以只要把问题分成两个,如果都能满足,再进行配对即可。

    那么问题就变成了在[1,n]上有n个区间,把n个整数恰好不重不漏地分配到每个区间。

    很明显用贪心。

     1 #include<cstdio>
     2 #include<cstring>
     3 struct qj
     4 {
     5     int l,r,num;
     6 }q1,q2;
     7 qj a1[5010],a2[5010];
     8 int p1[5010],p2[5010],n;
     9 bool xy(qj a,qj b)
    10 {
    11     return a.l<b.l||(a.l==b.l&&a.r<b.r);
    12 }
    13 void st1(int l,int r)
    14 {
    15     int i,j,k;
    16     qj mid=a1[(l+r)/2];
    17     i=l;
    18     j=r;
    19     do
    20     {
    21         while (xy(a1[i],mid)) i++;
    22         while (xy(mid,a1[j])) j--;
    23         if (i<=j)
    24         {
    25             p1[a1[i].num]=j;
    26             p1[a1[j].num]=i;
    27             q1=a1[i];
    28             a1[i]=a1[j];
    29             a1[j]=q1;
    30             i++;
    31             j--; 
    32         }
    33     }
    34     while (i<=j);
    35     if (l<j) st1(l,j);
    36     if (i<r) st1(i,r);
    37 }
    38 void st2(int l,int r)
    39 {
    40     int i,j,k;
    41     qj mid=a2[(l+r)/2];
    42     i=l;
    43     j=r;
    44     do
    45     {
    46         while (xy(a2[i],mid)) i++;
    47         while (xy(mid,a2[j])) j--;
    48         if (i<=j)
    49         {
    50             p2[a2[i].num]=j;
    51             p2[a2[j].num]=i;
    52             q2=a2[i];
    53             a2[i]=a2[j];
    54             a2[j]=q2;
    55             i++;
    56             j--; 
    57         }
    58     }
    59     while (i<=j);
    60     if (l<j) st2(l,j);
    61     if (i<r) st2(i,r);
    62 }
    63 int main()
    64 {
    65     int i,j,k,m,p,q,x,y,z;
    66     bool ok;
    67     while (scanf("%d",&n)&&n)
    68     {
    69         for (i=1;i<=n;i++)
    70         {
    71             scanf("%d%d%d%d",&q1.l,&q2.l,&q1.r,&q2.r);
    72             p1[i]=p2[i]=q1.num=q2.num=i;
    73             a1[i]=q1;
    74             a2[i]=q2;
    75         }
    76         st1(1,n);
    77         st2(1,n);
    78         ok=1;
    79         for (i=1;i<=n;i++)
    80           if (a1[i].l>i||a1[i].r<i||a2[i].l>i||a2[i].r<i)
    81           {
    82               ok=0;
    83               break;
    84           }
    85         if (ok)
    86           for (i=1;i<=n;i++)
    87             printf("%d %d
    ",p1[i],p2[i]);
    88         else
    89           printf("IMPOSSIBLE
    ");
    90     }
    91 }
    View Code

    以上是经典的错误答案。(反正我开始就是这么错的)

    把区间按左端点排序,第i个区间放整数i。

    反例:[1,1],[1,3],[2,2]。照这个贪心思路找不到解。

     1 #include<cstdio>
     2 #include<cstring>
     3 #define MS(a) memset(a,0,sizeof(a))
     4 int l1[5010],r1[5010],l2[5010],r2[5010],p1[5010],p2[5010];
     5 int main()
     6 {
     7     int i,j,k,m,n,p,q1,q2,x,y,z,min1,min2;
     8     bool ok;
     9     while (scanf("%d",&n)&&n)
    10     {
    11         MS(p1);
    12         MS(p2);
    13         for (i=1;i<=n;i++)
    14           scanf("%d%d%d%d",&l1[i],&l2[i],&r1[i],&r2[i]);
    15         ok=1;
    16         for (i=1;i<=n;i++)
    17         {
    18             q1=q2=-1;
    19             min1=min2=1000000;
    20             for (j=1;j<=n;j++)
    21             {
    22                 if (p1[j]==0&&l1[j]<=i&&r1[j]>=i&&r1[j]<min1)
    23                 {
    24                     q1=j;
    25                     min1=r1[j];
    26                 }
    27                 if (p2[j]==0&&l2[j]<=i&&r2[j]>=i&&r2[j]<min2)
    28                 {
    29                     q2=j;
    30                     min2=r2[j];
    31                 }
    32             }
    33             if (q1==-1||q2==-1)
    34             {
    35                 ok=0;
    36                 break;
    37             }
    38             p1[q1]=i;
    39             p2[q2]=i;
    40         }
    41         if (ok)
    42           for (i=1;i<=n;i++)
    43             printf("%d %d
    ",p1[i],p2[i]);
    44         else
    45           printf("IMPOSSIBLE
    ");
    46     }
    47 }

    正解:把按顺序枚举区间变成按顺序枚举点。对于每个点,找到它能放的、右端点最小的区间。

    若不取这个区间而取另一个右端点更大的区间,会让之后的点选择变少。

  • 相关阅读:
    Quartz快速入门 (转自 http://www.blogjava.net/baoyaer/articles/155645.html)
    C#HTML 转文本及HTML内容提取
    创建连接字符串方法
    源生js _AJax
    .NET里面附件上传大小限制的控制
    错误记录 COM
    Quartz的cron表达式
    Quartz 多任务调用
    Myeclipse的web工程和Eclipse互相转换
    Myeclipse8.0序列号生成程序
  • 原文地址:https://www.cnblogs.com/AwesomeOrion/p/5401225.html
Copyright © 2011-2022 走看看