zoukankan      html  css  js  c++  java
  • 极大似然估计

     极大似然估计方法是求估计的另一种方法,1821年首先由德国数学家C. F. Gauss提出,但是这个方法通常被归功于英国的统计学家R. A. Fisher,他在1922年的论文On the mathematical foundations of theoretical statistics, reprinted in Contributions to Mathematical Statistics (by R. A. Fisher), 1950, J. Wiley & Sons, New York 中再次提出了这个思想,并且首先探讨了这种方法的一些性质.极大似然估计这一名称也是费歇给的。这是一种目前仍然得到广泛应用的方法。它是建立在极大似然原理的基础上的一个统计方法,极大似然原理的直观想法是:一个随机试验如有若干个可能的结果A,B,C,…。若在一次试验中,结果A出现,则一般认为试验条件对A出现有利,也即A出现的概率很大。

      求极大似然函数估计值的一般步骤:

      (1) 写出似然函数;

      (2) 对似然函数取对数,并整理;

      (3) 求导数 ;
      (4) 解似然方程

      极大似然估计,只是一种概率论在统计学的应用,它是参数估计的方法之一。说的是已知某个随机样本满足某种概率分布,但是其中具体的参数不清楚,参数估计就是通过若干次试验,观察其结果,利用结果推出参数的大概值。极大似然估计是建立在这样的思想上:已知某个参数能使这个样本出现的概率最大,我们当然不会再去选择其他小概率的样本,所以干脆就把这个参数作为估计的真实值。

      当然极大似然估计只是一种粗略的数学期望,要知道它的误差大小还要做区间估计。
  • 相关阅读:
    CodeForces 734F Anton and School
    CodeForces 733F Drivers Dissatisfaction
    CodeForces 733C Epidemic in Monstropolis
    ZOJ 3498 Javabeans
    ZOJ 3497 Mistwald
    ZOJ 3495 Lego Bricks
    CodeForces 732F Tourist Reform
    CodeForces 732E Sockets
    CodeForces 731E Funny Game
    CodeForces 731D 80-th Level Archeology
  • 原文地址:https://www.cnblogs.com/wintergrass/p/2208434.html
Copyright © 2011-2022 走看看