zoukankan      html  css  js  c++  java
  • [洛谷P1613] 跑路

    洛谷题目链接:跑路

    题目描述

    小A的工作不仅繁琐,更有苛刻的规定,要求小A每天早上在6:00之前到达公司,否则这个月工资清零。可是小A偏偏又有赖床的坏毛病。于是为了保住自己的工资,小A买了一个十分牛B的空间跑路器,每秒钟可以跑2^k千米(k是任意自然数)。当然,这个机器是用longint存的,所以总跑路长度不能超过maxlongint千米。小A的家到公司的路可以看做一个有向图,小A家为点1,公司为点n,每条边长度均为一千米。小A想每天能醒地尽量晚,所以让你帮他算算,他最少需要几秒才能到公司。数据保证1到n至少有一条路径。

    输入输出格式

    输入格式:

    第一行两个整数n,m,表示点的个数和边的个数。

    接下来m行每行两个数字u,v,表示一条u到v的边。

    输出格式:

    一行一个数字,表示到公司的最少秒数。

    输入输出样例

    输入样例#1:

    4 4
    1 1
    1 2
    2 3
    3 4

    输出样例#1:

    1

    说明

    【样例解释】

    1->1->2->3->4,总路径长度为4千米,直接使用一次跑路器即可。

    【数据范围】

    50%的数据满足最优解路径长度<=1000;

    100%的数据满足n<=50,m<=10000,最优解路径长度<=maxlongint。

    一句话题意: 一个(n)点的有向图上有(m)条边,每条边的长度为1.你一秒可以走(2^k)的长度,求从(1)点到(n)点的最短时间.

    题解: 咋一看先想到的是倍增,但是这个有向图中是有环的,然后又想因为可以在环上随便走多少次,然后就以为只要不断在换上绕就一定可以(1)次到.

    但是这样是错的.我们可以假设这个环的长度为(len),在环上走了(x)次,假设(1)(n)只有一个环,除了这个环以外的距离为(dis),若要一次走到,则有(x*len+dis=2^k),将(x)看作变量,那么就可以将前半部分看作一个一次函数,后半部分看作一个指数函数,而这两个函数不一定有正整数的交点,所以这么想是错的.

    其实这道题也可以用类似最短路的方法来做.我们设(dis[i][j][k])表示(i)经过(2^k)到达了(j),那么统计出所有的路径之后就可以直接跑最短路了.

    #include<bits/stdc++.h>
    using namespace std;
    const int N=50+5;
    typedef int _int;
    #define int long long
    const int inf=2147483647;
    const int lim=60;
    
    int n, m, dis[N][N], path[N][N][100], ans = inf;
    
    _int main(){
        ios::sync_with_stdio(false);
        int x, y; cin >> n >> m;
        memset(dis, 127/3, sizeof(dis));
        for(int i=1;i<=m;i++) cin >> x >> y, path[x][y][0] = dis[x][y] = 1;
        for(int l=1;l<=lim;l++)
        for(int i=1;i<=n;i++)
            for(int k=1;k<=n;k++)
    	        for(int j=1;j<=n;j++)
    	            if(path[i][k][l-1] && path[k][j][l-1])
    		            path[i][j][l] = dis[i][j] = 1;
        for(int k=0;k<=n;k++)
    	    for(int i=1;i<=n;i++)
    	        for(int j=1;j<=n;j++)
    		        dis[i][j] = min(dis[i][j], dis[i][k]+dis[k][j]);
        cout << dis[1][n] << endl;
        return 0;
    }
    
  • 相关阅读:
    Log4net的一点改进
    SONY的几款秋季新品都还是很不错的
    在VisualStudio 工具箱中隐藏用户控件
    WPF中的DesignMode判断
    SONY的一款Win8平板
    .Net中的不可变集合(Immutable Collection)简介
    C++ 11中几个我比较喜欢的语法(三)
    很好用的谷歌字体以及Gravatar头像一键替换WordPress插件----WP Acceleration for China 插件
    关于微信获取access_token接口,返回值为-1000的问题
    主合同与补充合同的区别有哪些?
  • 原文地址:https://www.cnblogs.com/BCOI/p/9326217.html
Copyright © 2011-2022 走看看