zoukankan      html  css  js  c++  java
  • hdu 4790 Just Random 神奇的容斥原理

     1 /**
     2 大意: 给定[a,b],[c,d]  在这两个区间内分别取一个x,y  使得 (x+y)%p = m 
     3 思路:res = f(b,d) -f(b,c-1)-f(a-1,d)+f(a-1,c-1);   f(b,d ) 表示在[0,b],[0,d] 之间有多少个符合上述要求的数    
     4           1、将[0,b] 分为两部分, b/p  和 b%p  能整除p的[0,(b/p)*p] 和[(b/p)*p+1,b ]  同理[0,d]也可以这样分, 这样对于[0,b]  [0,d ] 分别有两种情况,则一共有四种情况。
     5 a、 对于能整除的部分,直接相乘可得结果ans += (b/p)*(d/p)*p;
     6 b、 对于b 不能整除的和 d 能整除的。。 ans += (b%p+1)*(d/p)
     7 c、 对于d不能整除的和b能整除的。   ans += (d%p+1)*(b/p)
     8 d 、 对于 b不能整除和d也不能整除的。。
     9 先举下面一个例子
    10 
    11 对于一个完整的区间来说,不难想到[0,m]对应[m,0],那么对于[m+1,p-1]对应哪一个区间呢,一个数a来说,如果a%p=m,则a=m,m+p,m+2*p……由于[0,p-1]中任意两个数的和都小于2*p,因此a只能为m或者m+p,那么[m+1,p-1]就对应着[p-1,m-1]。下面是m=3,p=8的情况
    12             0      1       2         3         4         5          6          7
    13             3      2       1         0         7         6          5          4          
    14 
    15 那么。。ma = b%p  mb = d%p。。。
    16 若是ma〉m  那么:
    17         ans += min(m+1,mb+1);
    18         tmp = (p+m-ma)%p;
    19         if(tmp<=mb) ans += (mb-tmp+1);
    20 
    21 若是ma〈 m 那么:
    22         tmp = (m-ma+p)%p;
    23         if(tmp<=mb)
    24             ans += min(m-tmp+1,mb-tmp+1);
    25 **/
    26 ////////////////////////////////////////////////
    27 别人的解释。。。
    28 总的组合数很容易算出来,也就是两个区间的整数的个数的乘积。接下来是求两个数的和,对于一个区间,我们可以根据区间模p的结果进行划分:[a%p,p-1],[0,p-1],[0,b%p],也就是说把区间中前面和后面不完整的[0,p-1]的区间单独拿出来分析,中间的完整的一起算就好了。接下来是区间中模p等于m的数的个数,对于一个完整的区间来说,不难想到[0,m]对应[m,0],那么对于[m+1,p-1]对应哪一个区间呢,一个数a来说,如果a%p=m,则a=m,m+p,m+2*p……由于[0,p-1]中任意两个数的和都小于2*p,因此a只能为m或者m+p,那么[m+1,p-1]就对应着[p-1,m-1]。下面是m=3,p=8的情况
    29             0      1       2         3         4         5          6          7
    30             3      2       1         0         7         6          5          4          
    31 这样一个完整的区间中两个数的和对p取模等于m的对应关系就确定了。接下来就是分区间讨论,对于完整的区间可以完全对应,因此是p,对于不完整的区间,算出它对应的区间,然后跟另一个区间比较,看覆盖的长度就行了。这题想到这应该就没问题了,但是写起来还是挺容易错的。
    32 ////////////////////////////////////////////////
    33 
    34 #include <iostream>
    35 #include <algorithm>
    36 using namespace std;
    37 long long a,b,c,d,p,m;
    38 
    39 long long min(long long a,long long b){
    40     return a<b?a:b;
    41 }
    42 
    43 long long sol(long long b,long long d){
    44     if(b<0||d<0)
    45         return 0;
    46     long long ma,mb;
    47     long long ans =0;
    48     long long tmp;
    49     ans += (b/p)*(d/p)*p;
    50     ma = b%p;
    51     mb = d%p;
    52     ans += (ma+1)*(d/p) + (mb+1)*(b/p);
    53     if(ma>m){
    54         ans += min(m+1,mb+1);
    55         tmp = (p+m-ma)%p;
    56         if(tmp<=mb) ans += (mb-tmp+1);
    57     }else{
    58         tmp = (m-ma+p)%p;
    59         if(tmp<=mb)
    60             ans += min(m-tmp+1,mb-tmp+1);
    61     }
    62     return ans;
    63 }
    64 
    65 long long gcd(long long a,long long b){
    66     if(b==0)
    67         return a;
    68     return gcd(b,a%b);
    69 }
    70 
    71 int main()
    72 {
    73     int t;
    74     cin>>t;
    75     int cnt;
    76     for(cnt=1;cnt<=t;cnt++){
    77         cin>>a>>b>>c>>d>>p>>m;
    78         long long res;
    79         res = sol(b,d)-sol(b,c-1)-sol(a-1,d)+sol(a-1,c-1);
    80         long long sum =(long long ) ((b-a+1)*(d-c+1));
    81         long long gcdD = gcd(res ,sum);
    82        // cout<<res<<"------------>"<<sum<<endl;
    83         res = res/gcdD;
    84         sum = sum/gcdD;
    85         cout<<"Case #"<<cnt<<": ";
    86         cout<<res<<"/"<<sum<<endl;
    87     }
    88     return 0;
    89 }
  • 相关阅读:
    jquer 的简输出
    jQuery 效果999动画 延迟
    Windows Mobile开发环境搭建指南
    使用.NET 框架压缩版开发Windows Mobile 2003 for Smartphone
    SmartPhone 2003 手机编程实战之一[转载]
    Smartphone移动开发—自己开发一个天气预报服务 (转载)
    101个微软提供的Visual Studio 2005示例
    基于 Windows Mobile 的 Pocket PC 和 Smartphone 的开发工具简介
    手机耐用绝对秘密方法
    Cheese 游戏编程:第 4 部分 (转自MSDN)
  • 原文地址:https://www.cnblogs.com/Bang-cansee/p/3724060.html
Copyright © 2011-2022 走看看