zoukankan      html  css  js  c++  java
  • 动态规划 53:Maximum Subarray,152:Maximum Subarray,266. Palindrome Permutation 回文全排列

     

    题意:寻找子数组的和最大。

    思路:设置dp数组来保存到第i位的最大和。

    判断第i-1位的正负,若dp[i-1]<0 则 dp[i] = nums[i]; 若 dp[i-1] > 0 则 dp[i] = dp[i-1] +nums[i];

    最后用 max_num = max(max_num, dp[i]); 来存储最大的和。

    class Solution {
    public:
        int maxSubArray(vector<int>& nums) {
            int len = nums.size();
            if(len == 0) return 0;
            if(len == 1) return nums[0];
            vector<int> dp(len, 0);  //dp[i]: 以第i个元素为结尾的最大子序列和
            dp[0] = nums[0];
            int max_num = dp[0];
            for(int i=1; i<len; i++){
                if(dp[i-1] > 0)
                    dp[i] = dp[i-1] +nums[i];
                else
                    dp[i] = nums[i];
                 
            }
            return max_num;
        }
    };

    题意:求子数组(数组里的数是连续)的最大乘积。

    思路:因为数组里有负号,所以用两个数组dp_max 和 dp_min 分别保存到当前位置i的最大值和最小值。

    状态转移方程:           

    dp_max[i%2] = max( max(dp_max[(i-1)%2]*nums[i], nums[i]), dp_min[(i-1)%2]*nums[i]);
    dp_min[i%2] = min(min(dp_min[(i-1)%2]*nums[i], nums[i]), dp_max[(i-1)%2]*nums[i]);

    class Solution {
    public:
        int maxProduct(vector<int>& nums) {
            int n = nums.size();
            if(n==0) return 0;
            int dp_max[2]={nums[0], 0}, dp_min[2]={nums[0], 0} ;
            int ans = nums[0];
            for(int i=1; i<n; i++){
                dp_max[i%2] = max( max(dp_max[(i-1)%2]*nums[i], nums[i]), dp_min[(i-1)%2]*nums[i]);
                dp_min[i%2] = min(min(dp_min[(i-1)%2]*nums[i], nums[i]), dp_max[(i-1)%2]*nums[i]);
                ans = max(ans, dp_max[i%2]);
            }
            
            return ans;
        }
    };

    266. Palindrome Permutation 回文全排列

    Given a string, determine if a permutation of the string could form a palindrome.

    Example 1:

    Input: "code"
    Output: false

    Example 2:

    Input: "aab"
    Output: true

    Example 3:

    Input: "carerac"
    Output: true

    Hint:

    1. Consider the palindromes of odd vs even length. What difference do you notice?
    2. Count the frequency of each character.
    3. If each character occurs even number of times, then it must be a palindrome. How about character which occurs odd number of times?
  • 相关阅读:
    JAVA面试问题与解答(1-15)
    17个经典的Spring面试问答
    Linux下载——下载文件的命令
    MySQL入门——在Linux下安装和卸载MySQL
    MySQL入门——在Linux下安装和卸载MariaDB
    MySQL入门——MySQL数据库和SQL语言
    Linux性能分析——分析系统性能相关的命令
    Linux网络——查看网络连接情况的命令
    Linux网络——配置网络之iproute家族命令
    Linux网络——配置网络之ifconfig家族命令
  • 原文地址:https://www.cnblogs.com/Bella2017/p/10957868.html
Copyright © 2011-2022 走看看