zoukankan      html  css  js  c++  java
  • MNIST数据集分类简单版本

    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    #载入数据集
    mnist = input_data.read_data_sets("/data/stu05/mnist_data",one_hot=True)
     
     
    Extracting /data/stu05/mnist_data/train-images-idx3-ubyte.gz
    Extracting /data/stu05/mnist_data/train-labels-idx1-ubyte.gz
    Extracting /data/stu05/mnist_data/t10k-images-idx3-ubyte.gz
    Extracting /data/stu05/mnist_data/t10k-labels-idx1-ubyte.gz
    
     
    #每个批次的大小
    batch_size = 100
    #计算一共有多少个批次
    n_batch = mnist.train.num_examples // batch_size
    #定义两个placeholder,None=100,28*28=784,即100行,784列
    x = tf.placeholder(tf.float32,[None,784])
    #0-9个输出标签
    y = tf.placeholder(tf.float32,[None,10])
    #创建一个简单的神经网络,只有输入层和输出层
    W = tf.Variable(tf.zeros([784,10]))
    b = tf.Variable(tf.zeros([1,10]))
    #softmax函数转化为概率值
    prediction = tf.nn.softmax(tf.matmul(x,W)+b)
    #二次代价函数
    loss = tf.reduce_mean(tf.square(y-prediction))
    #使用梯度下降法
    train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)
    #初始化变量
    init = tf.global_variables_initializer()
    #tf.equal()比较函数大小是否相同,相同为True,不同为false;tf.argmax():求y=1在哪个位置,求概率最大在哪个位置
    #argmax返回一维张量中最大的值所在的位置,结果存放在一个布尔型列表中
    correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))
    #求准确率
    #cast转化类型,将布尔型转化为32位浮点型,True=1.0,False=0.0;再求平均值
    accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
    with tf.Session() as sess:
        sess.run(init)
        #将所有图片训练21次
        for epoch in range(21):
            #训练一次所有的图片
            for batch in range(n_batch):
                batch_xs,batch_ys = mnist.train.next_batch(batch_size)
                #feed_dict传入训练集的图片和标签
                sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys})
            #传入测试集的图片和标签
            acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels})
            print("Iter"+str(epoch)+",Testing Accuracy:"+str(acc))
     
     
     
    Iter0,Testing Accuracy:0.8303
    Iter1,Testing Accuracy:0.8708
    Iter2,Testing Accuracy:0.8821
    Iter3,Testing Accuracy:0.8885
    Iter4,Testing Accuracy:0.8941
    Iter5,Testing Accuracy:0.8973
    Iter6,Testing Accuracy:0.9001
    Iter7,Testing Accuracy:0.9013
    Iter8,Testing Accuracy:0.9038
    Iter9,Testing Accuracy:0.9048
    Iter10,Testing Accuracy:0.9068
    Iter11,Testing Accuracy:0.9068
    Iter12,Testing Accuracy:0.9084
    Iter13,Testing Accuracy:0.9094
    Iter14,Testing Accuracy:0.9097
    Iter15,Testing Accuracy:0.9107
    Iter16,Testing Accuracy:0.9118
    Iter17,Testing Accuracy:0.9116
    Iter18,Testing Accuracy:0.9127
    Iter19,Testing Accuracy:0.9136
    Iter20,Testing Accuracy:0.9146
     
     
     
     
     
     
     
  • 相关阅读:
    全局临时表的应用 Timothy
    结合windows服务的Socket聊天室 Timothy
    阿拉伯数字转换成金额大写金额(包括小数) Timothy
    回文字符串和栈 Timothy
    SQL 读取不连续的第30到40之间的数据 Timothy
    C#中as和is关键字 Timothy
    嵌套事务和事务保存点的错误处理 Timothy
    隐式事务 Timothy
    float,double和decimal类型 Timothy
    string 值类型还是引用类型 Timothy
  • 原文地址:https://www.cnblogs.com/Bella2017/p/7967631.html
Copyright © 2011-2022 走看看