zoukankan      html  css  js  c++  java
  • 求解最大字段和的几种方法

    问题定义:

    给定n个整数(可能为负数)组成的序列a[1],a[2],a[3],…,a[n],求该序列如a[i]+a[i+1]+…+a[j]的子段和的最大值(0<i<j<n)。当所给的整均为负数时定义子段和为0,依此定义,比如{5,-3,4,2}的最大子序列就是 {5,-3,4,2},它的和是8,达到最大;而 {5,-6,4,2}的最大子序列是{4,2},它的和是6。

    方法一:学过程序设计的都会,那就是枚举i和j,求i和a[i]到a[j]之间的和的最大值。

    int maxsub(int *a,int n)

    {

      int i,j,k,maxn=0;

      for(i = 0 ; i < n ; i++)

      {

        for(j = i+1 ; j < n ;j++)

        {

          int temp_max = 0 ;

          for(k = i ; k <= j ;k++)

          {

            temp_max+=a[k];

          }

          if(temmax > maxn)

          {

            maxn = temp_max;

          }

        }

      }

      return maxn;

    }

    时间复杂度O(n^3)。这显然是不能接受滴。其实这其中进行了大量的重复计算。

    方法二:

    可以把字段和结果线计算出来啊,存储到s[]数组中,即预处理

    int sum = 0.s[n];

    for(i = 0 ; i < n ; i++)

    {

      sum+=a[i];

      s[i]=sum;

    }

    这样在每次计算a[i]到a[j]之间的数和的时候就等于s[j]-s[i]。如此优化时间复杂度变为O(n^2).好一些了,能不能优化呢?显然在优化就是O(n*logn)和O(n)了吧!

    方法三:

    考虑能不能有O(n*logn)的算法呢?当然有了……

    如果将给定的序列a[1..n]分成长度相等的两段a[1..n/2]和a[n/2+1:n],分别求出这两段的最大字段和。则该给定序列的最大字段和有三种情行:

    1)和a[1..n/2]的最大字段和相同。

    2)和a[n/2+1:n]的最大字段和相同。

    3)最大字段和包含两部分,一部分在中,另一部分在a[n/2+1..n]中。

    前两种情形我们可以用递归方法求出,第三种情形可以分别求出两部分的最大字段和值再相加(注:a[1..n/2]这部分求最大字段和要以a[n/2]结束,a[n/2+1..n] 这部分求最大字段和要以a[n/2+1]开始)。序列的最大字段和即为这三种情形的最大值。

    int maxSubItem(int *a,int low,int high)

    {

      int s1,s2,s31,s32,i,j;

      int sum;

      int mid = ( low + high ) / 2;

      if(low == high)

        return a[low];

      else

      {

        s1 = maxSubItem(a,low,mid);

        s2 = maxSubItem(a,mid+1,high);

        i = mid;

        s31 = a[mid];

        while ((s31 + a[i-1] > s31) && (i > low))

        {

          s31 += a[i-1];

          i--;

        }

        j = mid + 1;

        s32 = a[mid + 1];

        while ((s32 + a[j + 1] > s32) && (j < high))

        {

          s32 += a[j + 1];

          j++;

        }

        sum = s31 + s32;

        if(sum < s1) sum = s1;

        if(sum < s2) sum = s2;

      }

    }

    这种情况下,显然时间复杂度为O(n*logn)。要是有O(n)的算法该多好呢?事实上还真有。这自然就是要想到动态规划了吧!!!

    方法四:

    int maxsub(int a,int n)

    {

      int temp = 0,maxn = -INF,k=1

      int start,end;

      for(i = 1 ; i <= n ;i++)

      {

        temp+=a[i];

        if(temp > maxn)

        {

          maxn = temp;start = k ;end = i;

        }

        if(temp < 0)

        {

          temp = 0;k = i+1;

        }

      }

      return maxn;

    }

    分析一下这个算法,借用了一个临时变量temp,其实有三种情况:

    1. 若temp>maxn则更新maxn,并保存开始和结束位置;

    2. 若temp<0则令temp = 0,因为temp<0则不可能继续用temp更新最大值了;

    3. 若0<temp<maxn,则不作操作,这是temp被认为是有潜力的,可能会用来更新后面的值。这样的一次遍历搜索到了所有的最大值。

    (temp的使用时关键,好好理解这种思想。理解不了也没关系,这是比较难想的方法。)

  • 相关阅读:
    设计一个smartnic
    lshw
    VF PF Reset Tests
    iommu dmar 和虚拟机
    2019-10-31-win10-uwp-访问解决方案文件
    2019-10-31-win10-uwp-访问解决方案文件
    2019-8-31-dotnet-使用-Environment.FailFast-结束程序
    2019-8-31-dotnet-使用-Environment.FailFast-结束程序
    docker dead but pid file exists 问题
    java数据结构(二叉树)
  • 原文地址:https://www.cnblogs.com/BeyondAnyTime/p/2507177.html
Copyright © 2011-2022 走看看