zoukankan      html  css  js  c++  java
  • Codeforces Round #609 (Div. 2) ABC 题解

    A. Equation

    题意:找出两个合数a,b使得 a - b = n。

    思路:水题,让a = 10n, b = 9n ,那么ab必定都是合数。

    #include<iostream>
    #include<string>
    #include<algorithm>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<map>
    #include <queue>
    #include<sstream>
    #include <stack>
    #include <set>
    #include <bitset>
    #include<vector>
    #define FAST ios::sync_with_stdio(false)
    #define abs(a) ((a)>=0?(a):-(a))
    #define sz(x) ((int)(x).size())
    #define all(x) (x).begin(),(x).end()
    #define mem(a,b) memset(a,b,sizeof(a))
    #define max(a,b) ((a)>(b)?(a):(b))
    #define min(a,b) ((a)<(b)?(a):(b))
    #define rep(i,a,n) for(int i=a;i<=n;++i)
    #define per(i,n,a) for(int i=n;i>=a;--i)
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    using namespace std;
    typedef long long ll;
    typedef pair<ll,ll> PII;
    const int maxn = 1e5+200;
    const int inf=0x3f3f3f3f;
    const double eps = 1e-7;
    const double pi=acos(-1.0);
    const int mod = 1e9+7;
    inline int lowbit(int x){return x&(-x);}
    ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    void ex_gcd(ll a,ll b,ll &d,ll &x,ll &y){if(!b){d=a,x=1,y=0;}else{ex_gcd(b,a%b,d,y,x);y-=x*(a/b);}}//x=(x%(b/d)+(b/d))%(b/d);
    inline ll qpow(ll a,ll b,ll MOD=mod){ll res=1;a%=MOD;while(b>0){if(b&1)res=res*a%MOD;a=a*a%MOD;b>>=1;}return res;}
    inline ll inv(ll x,ll p){return qpow(x,p-2,p);}
    inline ll Jos(ll n,ll k,ll s=1){ll res=0;rep(i,1,n+1) res=(res+k)%i;return (res+s)%n;}
    inline ll read(){ ll f = 1; ll x = 0;char ch = getchar();while(ch>'9'||ch<'0') {if(ch=='-') f=-1; ch = getchar();}while(ch>='0'&&ch<='9') x = (x<<3) + (x<<1) + ch - '0',  ch = getchar();return x*f; }
    int dir[4][2] = { {1,0}, {-1,0},{0,1},{0,-1} };
    
    int main()
    {
        ll n = read();
        cout<<10*n<<' '<<9*n<<endl;
        return 0;
    }
    
    

    B. Modulo Equality

    题意:找到一个最小的x,使得每个(a[i] + x)%m后能在b数组中找到一一对应的。

    看到n才2000,尝试暴力一点的思路。从结果入手,a[1]在+x模m后肯定和b数组中的某个数是对应的,借此思路,我们就枚举一遍b数组,假设当前b[p]就是a[1]+x变过去的。这样我们就知道了和b[p]匹配时的x,然后拿这个x遍历一遍a数组看是否合法,合法的话就更新我们的min值。时间复杂度O(n²)

    #include<iostream>
    #include<string>
    #include<algorithm>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<map>
    #include <unordered_map>
    #include <queue>
    #include<sstream>
    #include <stack>
    #include <set>
    #include <bitset>
    #include<vector>
    #define FAST ios::sync_with_stdio(false)
    #define abs(a) ((a)>=0?(a):-(a))
    #define sz(x) ((int)(x).size())
    #define all(x) (x).begin(),(x).end()
    #define mem(a,b) memset(a,b,sizeof(a))
    #define max(a,b) ((a)>(b)?(a):(b))
    #define min(a,b) ((a)<(b)?(a):(b))
    #define rep(i,a,n) for(int i=a;i<=n;++i)
    #define per(i,n,a) for(int i=n;i>=a;--i)
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    using namespace std;
    typedef long long ll;
    typedef pair<ll,ll> PII;
    const int maxn = 3e3+200;
    const int inf=0x3f3f3f3f;
    const double eps = 1e-7;
    const double pi=acos(-1.0);
    const int mod = 1e9+7;
    inline int lowbit(int x){return x&(-x);}
    ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    void ex_gcd(ll a,ll b,ll &d,ll &x,ll &y){if(!b){d=a,x=1,y=0;}else{ex_gcd(b,a%b,d,y,x);y-=x*(a/b);}}//x=(x%(b/d)+(b/d))%(b/d);
    inline ll qpow(ll a,ll b,ll MOD=mod){ll res=1;a%=MOD;while(b>0){if(b&1)res=res*a%MOD;a=a*a%MOD;b>>=1;}return res;}
    inline ll inv(ll x,ll p){return qpow(x,p-2,p);}
    inline ll Jos(ll n,ll k,ll s=1){ll res=0;rep(i,1,n+1) res=(res+k)%i;return (res+s)%n;}
    inline ll read(){ ll f = 1; ll x = 0;char ch = getchar();while(ch>'9'||ch<'0') {if(ch=='-') f=-1; ch = getchar();}while(ch>='0'&&ch<='9') x = (x<<3) + (x<<1) + ch - '0',  ch = getchar();return x*f; }
    int dir[4][2] = { {1,0}, {-1,0},{0,1},{0,-1} };
    
    ll a[maxn];
    ll b[maxn];
    unordered_map<ll,ll> Map;
    unordered_map<ll,ll> Map1;
    
    int main()
    {
        ll n = read(), m = read();
        rep(i,1,n) a[i] = read();
        rep(i,1,n) b[i] = read(), Map[b[i]] ++;
        ll mi = inf;
        int p = 1;
        while(p<=n)
        {
            Map1.clear();
            for(auto it = Map.begin(); it != Map.end(); it++) Map1[it->fi] = it->se;
            ll x = 0;
            if(a[1] > b[p]) x = m - (a[1] - b[p]);
            else x = b[p] - a[1];
    
            rep(i,1,n) Map1[(a[i]+x)%m] -- ;
            int flag = 1;
            for(auto it = Map1.begin(); it != Map1.end(); it++)
            {
                if(it->se!=0)
                {
                    flag = 0;
                    break;
                }
            }
            if(flag) mi = min(mi, x);
            p++;
        }
        cout<<mi<<endl;
        return 0;
    }
    
    

    C. Long Beautiful Integer

    题意:给一个数x,找到一个y>=x且y[i] = y[i-k](i>=k)。

    思路:贪心一下,其实我们需要研究的只是前k个数,要构造的数后面都是这k个的循环。
    1.如果我们直接构造x前k个数的循环,如果此时的y还大于等于x话,就是最优的,什么都不用改,直接重复这k段。
    2.否则,就让前k段+1,这个时候再重复肯定比x大,而且还能保证是最小的。
    所以就按照上面判断条件走一下,如果要+1还要考虑一下进位。

    #include<iostream>
    #include<string>
    #include<algorithm>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<map>
    #include <queue>
    #include<sstream>
    #include <stack>
    #include <set>
    #include <bitset>
    #include<vector>
    #define FAST ios::sync_with_stdio(false)
    #define abs(a) ((a)>=0?(a):-(a))
    #define sz(x) ((int)(x).size())
    #define all(x) (x).begin(),(x).end()
    #define mem(a,b) memset(a,b,sizeof(a))
    #define max(a,b) ((a)>(b)?(a):(b))
    #define min(a,b) ((a)<(b)?(a):(b))
    #define rep(i,a,n) for(int i=a;i<=n;++i)
    #define per(i,n,a) for(int i=n;i>=a;--i)
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    using namespace std;
    typedef long long ll;
    typedef pair<ll,ll> PII;
    const int maxn = 2e5+200;
    const int inf=0x3f3f3f3f;
    const double eps = 1e-7;
    const double pi=acos(-1.0);
    const int mod = 1e9+7;
    inline int lowbit(int x){return x&(-x);}
    ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    void ex_gcd(ll a,ll b,ll &d,ll &x,ll &y){if(!b){d=a,x=1,y=0;}else{ex_gcd(b,a%b,d,y,x);y-=x*(a/b);}}//x=(x%(b/d)+(b/d))%(b/d);
    inline ll qpow(ll a,ll b,ll MOD=mod){ll res=1;a%=MOD;while(b>0){if(b&1)res=res*a%MOD;a=a*a%MOD;b>>=1;}return res;}
    inline ll inv(ll x,ll p){return qpow(x,p-2,p);}
    inline ll Jos(ll n,ll k,ll s=1){ll res=0;rep(i,1,n+1) res=(res+k)%i;return (res+s)%n;}
    inline ll read(){ ll f = 1; ll x = 0;char ch = getchar();while(ch>'9'||ch<'0') {if(ch=='-') f=-1; ch = getchar();}while(ch>='0'&&ch<='9') x = (x<<3) + (x<<1) + ch - '0',  ch = getchar();return x*f; }
    int dir[4][2] = { {1,0}, {-1,0},{0,1},{0,-1} };
    
    
    int main()
    {
        string s;
        ll n = read(), k = read();
        cin>>s;
        string t;
        for(int i=0; i < k; i++) t += s[i];
        for(int i=k; i<n; i++) t += t[i-k];
        if(t >= s)
        {
            cout<<n<<'
    ';
            cout<<t<<'
    ';
        }
        else
        {
            int e = 1;
            per(i,k-1,0)
            {
                int cur = t[i] - '0';
                int tmp = cur;
                cur = (cur + e)%10;
                e = (tmp+e)/10;
                t[i] = cur + '0';
                if(!e) break;
            }
            cout<<n<<'
    ';
            rep(i,k,n-1) t[i] = t[i-k];
            cout<<t<<'
    ';
        }
        return 0;
    }
    
    
  • 相关阅读:
    从零自学Java-10.充分利用现有对象
    读书笔记-读《代码大全》有感
    从零自学Java-9.描述对象
    从零自学Java-8.创建第一个对象
    随机森林理解
    百度 前端 rem 适配 和 阿里 前端 rem 适配
    移动端 轮播
    楼层 跟随 js与jq
    js 滚动到指定位置(带step 速度)
    js 事件流
  • 原文地址:https://www.cnblogs.com/Bgwithcode/p/13547429.html
Copyright © 2011-2022 走看看