A. Sweet Problem
题意:有三个数,每次可以选两个-1,问最多能挑多少次。
思路:贪心一下。策略如下:
1.先将三个数排个序。
2.然后如果最大的和次大的不一样多的话,就让最大的和最小的一起减少,尽量减少到和次大的一样大。
3.然后a[2]和a[3]一样大时,若a[1]还有剩的,就和a[2]、a[3]均分一下,多出来的随便给。
4.最后a[2]和a[3]一起减少。贡献取最小值。
#include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<map>
#include <queue>
#include<sstream>
#include <stack>
#include <set>
#include <bitset>
#include<vector>
#define FAST ios::sync_with_stdio(false)
#define abs(a) ((a)>=0?(a):-(a))
#define sz(x) ((int)(x).size())
#define all(x) (x).begin(),(x).end()
#define mem(a,b) memset(a,b,sizeof(a))
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#define rep(i,a,n) for(int i=a;i<=n;++i)
#define per(i,n,a) for(int i=n;i>=a;--i)
#define pb push_back
#define mp make_pair
#define fi first
#define se second
using namespace std;
typedef long long ll;
typedef pair<ll,ll> PII;
const int maxn = 1e5+200;
const int inf=0x3f3f3f3f;
const double eps = 1e-7;
const double pi=acos(-1.0);
const int mod = 1e9+7;
inline int lowbit(int x){return x&(-x);}
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
void ex_gcd(ll a,ll b,ll &d,ll &x,ll &y){if(!b){d=a,x=1,y=0;}else{ex_gcd(b,a%b,d,y,x);y-=x*(a/b);}}//x=(x%(b/d)+(b/d))%(b/d);
inline ll qpow(ll a,ll b,ll MOD=mod){ll res=1;a%=MOD;while(b>0){if(b&1)res=res*a%MOD;a=a*a%MOD;b>>=1;}return res;}
inline ll inv(ll x,ll p){return qpow(x,p-2,p);}
inline ll Jos(ll n,ll k,ll s=1){ll res=0;rep(i,1,n+1) res=(res+k)%i;return (res+s)%n;}
inline ll read(){ ll f = 1; ll x = 0;char ch = getchar();while(ch>'9'||ch<'0') {if(ch=='-') f=-1; ch = getchar();}while(ch>='0'&&ch<='9') x = (x<<3) + (x<<1) + ch - '0', ch = getchar();return x*f; }
int dir[4][2] = { {1,0}, {-1,0},{0,1},{0,-1} };
ll a[5];
int main()
{
int kase;
cin>>kase;
while(kase--)
{
cin>>a[1]>>a[2]>>a[3];
sort(a+1,a+1+3);
ll ans = 0;;
if(a[3] > a[2])
{
ll d = min(a[1], a[3] - a[2]);
ans += d;
a[3] -= d;
a[1] -= d;
}
if(a[3]==a[2]&&a[1])
{
ll d = a[1] /2 ;
ans += d*2;
ans += a[1]%2;
a[3] -= a[1]%2;
a[3] -= d, a[2] -= d;
}
ans += min(a[2], a[3]);
cout<<ans<<endl;
}
return 0;
}
B. PIN Codes
题意,给你n个数,问你最小改变他们中多少个位,才能使得全部都不一样。
发现n最大也就10。所以我们只需要考虑个位即可。如果前三位都一样,我们就改变个位。若前三位有不一样的,就不需要改。
#include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<map>
#include <queue>
#include<sstream>
#include <stack>
#include <set>
#include <bitset>
#include<vector>
#define FAST ios::sync_with_stdio(false)
#define abs(a) ((a)>=0?(a):-(a))
#define sz(x) ((int)(x).size())
#define all(x) (x).begin(),(x).end()
#define mem(a,b) memset(a,b,sizeof(a))
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#define rep(i,a,n) for(int i=a;i<=n;++i)
#define per(i,n,a) for(int i=n;i>=a;--i)
#define pb push_back
#define mp make_pair
#define fi first
#define se second
using namespace std;
typedef long long ll;
typedef pair<ll,ll> PII;
const int maxn = 1e5+200;
const int inf=0x3f3f3f3f;
const double eps = 1e-7;
const double pi=acos(-1.0);
const int mod = 1e9+7;
inline int lowbit(int x){return x&(-x);}
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
void ex_gcd(ll a,ll b,ll &d,ll &x,ll &y){if(!b){d=a,x=1,y=0;}else{ex_gcd(b,a%b,d,y,x);y-=x*(a/b);}}//x=(x%(b/d)+(b/d))%(b/d);
inline ll qpow(ll a,ll b,ll MOD=mod){ll res=1;a%=MOD;while(b>0){if(b&1)res=res*a%MOD;a=a*a%MOD;b>>=1;}return res;}
inline ll inv(ll x,ll p){return qpow(x,p-2,p);}
inline ll Jos(ll n,ll k,ll s=1){ll res=0;rep(i,1,n+1) res=(res+k)%i;return (res+s)%n;}
inline ll read(){ ll f = 1; ll x = 0;char ch = getchar();while(ch>'9'||ch<'0') {if(ch=='-') f=-1; ch = getchar();}while(ch>='0'&&ch<='9') x = (x<<3) + (x<<1) + ch - '0', ch = getchar();return x*f; }
int dir[4][2] = { {1,0}, {-1,0},{0,1},{0,-1} };
map<string, int> Map;
int main()
{
int kase;
cin>>kase;
while(kase--)
{
vector<string> s;
Map.clear();
int n; cin>>n;
rep(i,1,n)
{
string tmp;
cin>>tmp;
s.pb(tmp);
Map[tmp]++;
}
int cnt = 0;
rep(i,1,n)
{
string cur = s[i-1];
if(Map[cur]>1)
{
for(int j=0; j<=9; j++)
{
s[i-1][3] = j + '0';
if(!Map[s[i-1]])
{
cnt++;
Map[s[i-1]] ++;
Map[cur] --;
break;
}
}
}
}
cout<<cnt<<'
';
rep(i,1,n) cout<<s[i-1]<<'
';
}
return 0;
}
C. Everyone is a Winner!
题意:问你 (lfloor n/1 floor), (lfloor n/2 floor), (lfloor n/3 floor) ..... (lfloor n/n floor), (lfloor n/(n+1) floor) 共有多少种不同的数。
其实这是整数分块的模板题了。如果直接遍历的话是O(n)的时间复杂度,必超时。
我们发现,如n = 100时, n/20 = 5, n/21 = n/22 = n/23 = n/24 = n/25 = 4,像[21,25]完全不用再遍历的。我们在到i=21时,就可以知道商为4时最远能到哪里——能到(n/(n/21)) = 25,所以下次遍历的时候直接从25开始即可。 这便是整数分块的思想。详见代码,时间复杂度O((sqrt{n}))。
#include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<map>
#include <unordered_map>
#include <queue>
#include<sstream>
#include <stack>
#include <set>
#include <bitset>
#include<vector>
#define FAST ios::sync_with_stdio(false)
#define abs(a) ((a)>=0?(a):-(a))
#define sz(x) ((int)(x).size())
#define all(x) (x).begin(),(x).end()
#define mem(a,b) memset(a,b,sizeof(a))
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#define rep(i,a,n) for(int i=a;i<=n;++i)
#define per(i,n,a) for(int i=n;i>=a;--i)
#define pb push_back
#define mp make_pair
#define fi first
#define se second
using namespace std;
typedef long long ll;
typedef pair<ll,ll> PII;
const int maxn = 1e5+200;
const int inf=0x3f3f3f3f;
const double eps = 1e-7;
const double pi=acos(-1.0);
const int mod = 1e9+7;
inline int lowbit(int x){return x&(-x);}
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
void ex_gcd(ll a,ll b,ll &d,ll &x,ll &y){if(!b){d=a,x=1,y=0;}else{ex_gcd(b,a%b,d,y,x);y-=x*(a/b);}}//x=(x%(b/d)+(b/d))%(b/d);
inline ll qpow(ll a,ll b,ll MOD=mod){ll res=1;a%=MOD;while(b>0){if(b&1)res=res*a%MOD;a=a*a%MOD;b>>=1;}return res;}
inline ll inv(ll x,ll p){return qpow(x,p-2,p);}
inline ll Jos(ll n,ll k,ll s=1){ll res=0;rep(i,1,n+1) res=(res+k)%i;return (res+s)%n;}
inline ll read(){ ll f = 1; ll x = 0;char ch = getchar();while(ch>'9'||ch<'0') {if(ch=='-') f=-1; ch = getchar();}while(ch>='0'&&ch<='9') x = (x<<3) + (x<<1) + ch - '0', ch = getchar();return x*f; }
int dir[4][2] = { {1,0}, {-1,0},{0,1},{0,-1} };
vector<ll> res;
void solve(ll n)
{
for(ll l=1,r=0; l<=n; l = r+1)
{
res.pb(n/l);
r = (n/ (n/l));
}
}
int main()
{
int kase;
cin>>kase;
while(kase--)
{
res.clear();
ll n = read();
solve(n); res.pb(0);
sort(res.begin(),res.end());
cout<<res.size()<<'
';
for(int i=0; i<res.size();i++)
cout<<res[i]<<' ';
cout<<'
';
}
return 0;
}