zoukankan      html  css  js  c++  java
  • Gym

    A - Gaby And Addition

    题意:给n个数,现在规定一个操作是不进位的加法,问两两操作的最小值和最大值。

    思路:既然是不进位,那每个位之间就没有影响了。我们现在想要两两操作的值最大的话,就相当于找其他n-1个数,跟他们的前缀匹配一下,找出每一位能产生的最大值((cur+bit[i])%10的最大值)。这样就可以用字典树维护前面的数的前缀,每次只用匹配一下往最值方向走就行了。最小值同理。详见代码。

    view code
    #include<iostream>
    #include<string>
    #include<algorithm>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<map>
    #include <queue>
    #include<sstream>
    #include <stack>
    #include <set>
    #include <bitset>
    #include<vector>
    #define FAST ios::sync_with_stdio(false)
    #define abs(a) ((a)>=0?(a):-(a))
    #define sz(x) ((int)(x).size())
    #define all(x) (x).begin(),(x).end()
    #define mem(a,b) memset(a,b,sizeof(a))
    #define max(a,b) ((a)>(b)?(a):(b))
    #define min(a,b) ((a)<(b)?(a):(b))
    #define rep(i,a,n) for(int i=a;i<=n;++i)
    #define per(i,n,a) for(int i=n;i>=a;--i)
    #define endl '
    '
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    using namespace std;
    typedef long long ll;
    typedef pair<ll,ll> PII;
    const int maxn = 1e6+200;
    const ll inf=0x3f3f3f3f3f3f3f3f;
    const double eps = 1e-7;
    const double pi=acos(-1.0);
    const int mod = 1e9+7;
    inline int lowbit(int x){return x&(-x);}
    ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    void ex_gcd(ll a,ll b,ll &d,ll &x,ll &y){if(!b){d=a,x=1,y=0;}else{ex_gcd(b,a%b,d,y,x);y-=x*(a/b);}}//x=(x%(b/d)+(b/d))%(b/d);
    inline ll qpow(ll a,ll b,ll MOD=mod){ll res=1;a%=MOD;while(b>0){if(b&1)res=res*a%MOD;a=a*a%MOD;b>>=1;}return res;}
    inline ll inv(ll x,ll p){return qpow(x,p-2,p);}
    inline ll Jos(ll n,ll k,ll s=1){ll res=0;rep(i,1,n+1) res=(res+k)%i;return (res+s)%n;}
    inline ll read(){ ll f = 1; ll x = 0;char ch = getchar();while(ch>'9'||ch<'0') {if(ch=='-') f=-1; ch = getchar();}while(ch>='0'&&ch<='9') x = (x<<3) + (x<<1) + ch - '0',  ch = getchar();return x*f; }
    int dir[4][2] = { {1,0}, {-1,0},{0,1},{0,-1} };
    
    ll n;
    ll trie[13*maxn][10];
    ll a[maxn];
    ll pw[20];
    
    int k = 1;
    
    inline void insert(ll x)
    {
        int p = 0;
        vector<int> tmp;
        rep(i,0,18) tmp.pb(x%10), x /= 10;
        per(i,18,0)
        {
            int ch = tmp[i];
            if(!trie[p][ch]) trie[p][ch] = k++;
            p = trie[p][ch];
        }
    }
    
    inline ll search(ll x, bool flag)
    {
        int p = 0;
        vector<int> tmp;
        rep(i,0,18) tmp.pb(x%10), x /= 10;
        ll ans = 0;
        per(i,18,0)
        {
            int ch = tmp[i];
            if(flag)
            {
                int maxj = -1, cur = -1;
                per(j,9,0) if(trie[p][j]&&(ch + j)%10 > cur) cur = (ch+j)%10, maxj = j;
                p = trie[p][maxj], ans = ans + pw[i]*((ch + maxj) % 10);
            }
            else
            {
                int minj = -1, cur = 11;
                per(j,9,0) if(trie[p][j]&&(ch + j)%10 < cur) cur = (ch+j)%10, minj = j;
                p = trie[p][minj], ans = ans + pw[i]* ((ch + minj) % 10);
            }
        }
        return ans;
    }
    
    signed main()
    {
        pw[0] = 1;  ll ans1 = inf, ans2 = 0;
        for(int i = 1; i <= 18; i++) pw[i] = pw[i-1] * 10;
        n = read();
        rep(i,1,n)
        {
            a[i] = read();
            if(i>1)
            ans1 = min(ans1,search(a[i],false)) ,ans2 = max(ans2, search(a[i],true));
            insert(a[i]);
        }
        cout<<ans1<<' '<<ans2<<'
    ';
        return 0;
    }
    
    

    B - Maximum Tree

    题意:给n个数,随意排列,使得在a[k]代表树第k层的结点所含有的子树个数的前提下,树的结点个数最大值。

    贪心,把子树个数多的放到靠近根的地方即可。

    view code
    #include<iostream>
    #include<string>
    #include<algorithm>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<map>
    #include <queue>
    #include<sstream>
    #include <stack>
    #include <set>
    #include <bitset>
    #include<vector>
    #define FAST ios::sync_with_stdio(false)
    #define abs(a) ((a)>=0?(a):-(a))
    #define sz(x) ((int)(x).size())
    #define all(x) (x).begin(),(x).end()
    #define mem(a,b) memset(a,b,sizeof(a))
    #define max(a,b) ((a)>(b)?(a):(b))
    #define min(a,b) ((a)<(b)?(a):(b))
    #define rep(i,a,n) for(int i=a;i<=n;++i)
    #define per(i,n,a) for(int i=n;i>=a;--i)
    #define endl '
    '
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    using namespace std;
    typedef long long ll;
    typedef pair<ll,ll> PII;
    const int maxn = 1e5+200;
    const int inf=0x3f3f3f3f;
    const double eps = 1e-7;
    const double pi=acos(-1.0);
    const int mod = 1e9+7;
    inline int lowbit(int x){return x&(-x);}
    ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    void ex_gcd(ll a,ll b,ll &d,ll &x,ll &y){if(!b){d=a,x=1,y=0;}else{ex_gcd(b,a%b,d,y,x);y-=x*(a/b);}}//x=(x%(b/d)+(b/d))%(b/d);
    inline ll qpow(ll a,ll b,ll MOD=mod){ll res=1;a%=MOD;while(b>0){if(b&1)res=res*a%MOD;a=a*a%MOD;b>>=1;}return res;}
    inline ll inv(ll x,ll p){return qpow(x,p-2,p);}
    inline ll Jos(ll n,ll k,ll s=1){ll res=0;rep(i,1,n+1) res=(res+k)%i;return (res+s)%n;}
    inline ll read(){ ll f = 1; ll x = 0;char ch = getchar();while(ch>'9'||ch<'0') {if(ch=='-') f=-1; ch = getchar();}while(ch>='0'&&ch<='9') x = (x<<3) + (x<<1) + ch - '0',  ch = getchar();return x*f; }
    int dir[4][2] = { {1,0}, {-1,0},{0,1},{0,-1} };
    
    ll a[maxn];
    
    int main()
    {
        ll n = read();
        rep(i,1,n) a[i] = read();
        sort(a+1,a+1+n);
        ll ans = 1;
        ll cur = 1;
        ll pre = 1;
        per(i,n,1)
        {
            cur = pre*a[i];
            ans += cur;
            pre = cur;
        }
        cout<<ans<<endl;
        return 0;
    }
    
    

    C - Planet Communcation

    题意:问最少要多少条过原点的直线可以覆盖图中所有点。

    思路:以第一个点作为原点,然后构建向量,化成最简,然后看向量种类有多少种即是答案。

    view code
    #include<iostream>
    #include<string>
    #include<algorithm>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<map>
    #include <queue>
    #include<sstream>
    #include <stack>
    #include <set>
    #include <bitset>
    #include<vector>
    #define FAST ios::sync_with_stdio(false)
    #define abs(a) ((a)>=0?(a):-(a))
    #define sz(x) ((int)(x).size())
    #define all(x) (x).begin(),(x).end()
    #define mem(a,b) memset(a,b,sizeof(a))
    #define max(a,b) ((a)>(b)?(a):(b))
    #define min(a,b) ((a)<(b)?(a):(b))
    #define rep(i,a,n) for(int i=a;i<=n;++i)
    #define per(i,n,a) for(int i=n;i>=a;--i)
    #define endl '
    '
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    using namespace std;
    typedef long long ll;
    typedef pair<ll,ll> PII;
    const int maxn = 1e5+200;
    const int inf=0x3f3f3f3f;
    const double eps = 1e-7;
    const double pi=acos(-1.0);
    const int mod = 1e9+7;
    inline int lowbit(int x){return x&(-x);}
    ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    void ex_gcd(ll a,ll b,ll &d,ll &x,ll &y){if(!b){d=a,x=1,y=0;}else{ex_gcd(b,a%b,d,y,x);y-=x*(a/b);}}//x=(x%(b/d)+(b/d))%(b/d);
    inline ll qpow(ll a,ll b,ll MOD=mod){ll res=1;a%=MOD;while(b>0){if(b&1)res=res*a%MOD;a=a*a%MOD;b>>=1;}return res;}
    inline ll inv(ll x,ll p){return qpow(x,p-2,p);}
    inline ll Jos(ll n,ll k,ll s=1){ll res=0;rep(i,1,n+1) res=(res+k)%i;return (res+s)%n;}
    inline ll read(){ ll f = 1; ll x = 0;char ch = getchar();while(ch>'9'||ch<'0') {if(ch=='-') f=-1; ch = getchar();}while(ch>='0'&&ch<='9') x = (x<<3) + (x<<1) + ch - '0',  ch = getchar();return x*f; }
    int dir[4][2] = { {1,0}, {-1,0},{0,1},{0,-1} };
    
    typedef struct Pos
    {
        ll x;
        ll y;
        ll z;
      //  bool operator < (Pos a)const{return x<a.x;}
    }P;
    
    P a[maxn];
    
    
    map<pair<PII,ll>,ll> cnt;
    
    int main()
    {
        ll n = read();
        a[1].x = read(), a[1].y = read(), a[1].z = read();
        rep(i,2,n)
        {
            a[i].x = read(), a[i].y = read(), a[i].z = read();
            a[i].x -= a[1].x, a[i].y -= a[1].y, a[i].z -= a[1].z;
            ll d = gcd(a[i].x, a[i].y);
            d = gcd(d, a[i].z);
            P tmp;
            tmp.x = a[i].x/d, tmp.y = a[i].y/d, tmp.z = a[i].z/d;
            cnt[mp(mp(tmp.x, tmp.y),tmp.z)]++;
        }
        cout<<cnt.size()<<endl;
        return 0;
    }
    
    

    D - Double it

    题意:给一个操作A:x->2x+1, B:x->2x+2,一开始x为0,问到n的方案。

    思路:正着推发现有难度。但是发现到A可以唯一确定答案为一个奇数,B可以唯一确定答案为偶数。所以如果n一开始是奇数,那么肯定上一步是A过来的,偶数的话就肯定是B过来的,然后继续往回推。最后倒序输出方案就完事了。

    view code
    #include<iostream>
    #include<string>
    #include<algorithm>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<map>
    #include <queue>
    #include<sstream>
    #include <stack>
    #include <set>
    #include <bitset>
    #include<vector>
    #define FAST ios::sync_with_stdio(false)
    #define abs(a) ((a)>=0?(a):-(a))
    #define sz(x) ((int)(x).size())
    #define all(x) (x).begin(),(x).end()
    #define mem(a,b) memset(a,b,sizeof(a))
    #define max(a,b) ((a)>(b)?(a):(b))
    #define min(a,b) ((a)<(b)?(a):(b))
    #define rep(i,a,n) for(int i=a;i<=n;++i)
    #define per(i,n,a) for(int i=n;i>=a;--i)
    #define endl '
    '
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    using namespace std;
    typedef long long ll;
    typedef pair<ll,ll> PII;
    const int maxn = 1e5+200;
    const int inf=0x3f3f3f3f;
    const double eps = 1e-7;
    const double pi=acos(-1.0);
    const int mod = 1e9+7;
    inline int lowbit(int x){return x&(-x);}
    ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    void ex_gcd(ll a,ll b,ll &d,ll &x,ll &y){if(!b){d=a,x=1,y=0;}else{ex_gcd(b,a%b,d,y,x);y-=x*(a/b);}}//x=(x%(b/d)+(b/d))%(b/d);
    inline ll qpow(ll a,ll b,ll MOD=mod){ll res=1;a%=MOD;while(b>0){if(b&1)res=res*a%MOD;a=a*a%MOD;b>>=1;}return res;}
    inline ll inv(ll x,ll p){return qpow(x,p-2,p);}
    inline ll Jos(ll n,ll k,ll s=1){ll res=0;rep(i,1,n+1) res=(res+k)%i;return (res+s)%n;}
    inline ll read(){ ll f = 1; ll x = 0;char ch = getchar();while(ch>'9'||ch<'0') {if(ch=='-') f=-1; ch = getchar();}while(ch>='0'&&ch<='9') x = (x<<3) + (x<<1) + ch - '0',  ch = getchar();return x*f; }
    int dir[4][2] = { {1,0}, {-1,0},{0,1},{0,-1} };
    
    int main()
    {
        ll n;
        n = read();
        string s;
        while(n)
        {
            if(n&1) n--, n/=2, s += 'A';
            else n -= 2, n /= 2, s+= 'B';
        }
        per(i,s.size()-1,0) cout<<s[i]; cout<<endl;
        return 0;
    }
    
    

    E - Text Editor

    题意:给一个主串t和模式串p,问在p的最长的且在t中出现次数超过k次的前缀。

    思路:首先会想到KMP。但是如果直接拿模式串一位一位匹配是O(n2)的时间复杂度,肯定过不了。
    我们发现模式串长度越长,越不容易满足要求。所以这里有个单调性,可以来二分。我们二分答案可能的长度,然后用这么长的前缀丢进KMP里面,看看能否满足,如果发现可以,就把长度调大一点,反之调小一点。时间复杂度O(nlogn)。
    最后注意KMP用来计数时,每次匹配完不能直接j=0, i -= p.size(),因为这样会使得指针回溯使得算法退化。我们匹配完一个直接j = nxt[j]就行了(还是尽量选择前面最大匹配完的一部分接着匹配)。

    view code
    #include<iostream>
    #include<string>
    #include<algorithm>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<map>
    #include <queue>
    #include<sstream>
    #include <stack>
    #include <set>
    #include <bitset>
    #include<vector>
    #define FAST ios::sync_with_stdio(false)
    #define abs(a) ((a)>=0?(a):-(a))
    #define sz(x) ((int)(x).size())
    #define all(x) (x).begin(),(x).end()
    #define mem(a,b) memset(a,b,sizeof(a))
    #define max(a,b) ((a)>(b)?(a):(b))
    #define min(a,b) ((a)<(b)?(a):(b))
    #define rep(i,a,n) for(int i=a;i<=n;++i)
    #define per(i,n,a) for(int i=n;i>=a;--i)
    #define endl '
    '
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    using namespace std;
    typedef long long ll;
    typedef pair<ll,ll> PII;
    const int maxn = 1e5+200;
    const int inf=0x3f3f3f3f;
    const double eps = 1e-7;
    const double pi=acos(-1.0);
    const int mod = 1e9+7;
    inline int lowbit(int x){return x&(-x);}
    ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    void ex_gcd(ll a,ll b,ll &d,ll &x,ll &y){if(!b){d=a,x=1,y=0;}else{ex_gcd(b,a%b,d,y,x);y-=x*(a/b);}}//x=(x%(b/d)+(b/d))%(b/d);
    inline ll qpow(ll a,ll b,ll MOD=mod){ll res=1;a%=MOD;while(b>0){if(b&1)res=res*a%MOD;a=a*a%MOD;b>>=1;}return res;}
    inline ll inv(ll x,ll p){return qpow(x,p-2,p);}
    inline ll Jos(ll n,ll k,ll s=1){ll res=0;rep(i,1,n+1) res=(res+k)%i;return (res+s)%n;}
    inline ll read(){ ll f = 1; ll x = 0;char ch = getchar();while(ch>'9'||ch<'0') {if(ch=='-') f=-1; ch = getchar();}while(ch>='0'&&ch<='9') x = (x<<3) + (x<<1) + ch - '0',  ch = getchar();return x*f; }
    int dir[4][2] = { {1,0}, {-1,0},{0,1},{0,-1} };
    
    int nxt[maxn];
    
    void getnext(string p)
    {
        mem(nxt,0);
        nxt[0] = -1;        //第一位设为-1
        int i = 0, j = -1;   //i指针用来遍历数组, j相当于最大公共前后缀长度
        while(i<(int)p.size())
        {
            if(j==-1||p[i]==p[j]) i++, j++, nxt[i] = j;     //看看前后缀是否相等
            else j = nxt[j];        // 不行的话往前回溯
        }
    }
    
    int KMP(string t, string p)
    {
        int i = 0, j = 0;
        getnext(p);
        int cnt = 0;
        while(i<t.size())
        {
            if(j==p.size())
            {
                 cnt++;
                 j = nxt[j];
            }
            if(j==-1||t[i]==p[j]) i++, j++;     //相等继续
            else j = nxt[j];        // 失配后找到nxt[j]的位置继续匹配。
        }
        if(j==p.size()) cnt++;
        return cnt;
    }
    
    
    int main()
    {
        string t, p;
        int n;
        getline(cin,t);
        getline(cin,p);
        cin>>n;
        int L = 1 , R = p.size();
        string res = "-1";
        while(L<=R)
        {
            int mid = (L+R)>>1;
            string tmp(p,0, mid);
            if(KMP(t,tmp)>=n) res = tmp, L = mid + 1;
            else R = mid - 1;
        }
        if(res=="-1") cout<<"IMPOSSIBLE"<<endl;
        else cout<<res<<endl;
        return 0;
    }
    
    

    F - Polygon Triangles

    题意:给你n个三角形,问你能不能够组成一个非退化四边形。

    思路:发现其实是个三角形就能满足。。。

    view code
    #include<iostream>
    #include<string>
    #include<algorithm>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<map>
    #include <queue>
    #include<sstream>
    #include <stack>
    #include <set>
    #include <bitset>
    #include<vector>
    #define FAST ios::sync_with_stdio(false)
    #define abs(a) ((a)>=0?(a):-(a))
    #define sz(x) ((int)(x).size())
    #define all(x) (x).begin(),(x).end()
    #define mem(a,b) memset(a,b,sizeof(a))
    #define max(a,b) ((a)>(b)?(a):(b))
    #define min(a,b) ((a)<(b)?(a):(b))
    #define rep(i,a,n) for(int i=a;i<=n;++i)
    #define per(i,n,a) for(int i=n;i>=a;--i)
    #define endl '
    '
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    using namespace std;
    typedef long long ll;
    typedef pair<ll,ll> PII;
    const int maxn = 1e5+200;
    const int inf=0x3f3f3f3f;
    const double eps = 1e-7;
    const double pi=acos(-1.0);
    const int mod = 1e9+7;
    inline int lowbit(int x){return x&(-x);}
    ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    void ex_gcd(ll a,ll b,ll &d,ll &x,ll &y){if(!b){d=a,x=1,y=0;}else{ex_gcd(b,a%b,d,y,x);y-=x*(a/b);}}//x=(x%(b/d)+(b/d))%(b/d);
    inline ll qpow(ll a,ll b,ll MOD=mod){ll res=1;a%=MOD;while(b>0){if(b&1)res=res*a%MOD;a=a*a%MOD;b>>=1;}return res;}
    inline ll inv(ll x,ll p){return qpow(x,p-2,p);}
    inline ll Jos(ll n,ll k,ll s=1){ll res=0;rep(i,1,n+1) res=(res+k)%i;return (res+s)%n;}
    inline ll read(){ ll f = 1; ll x = 0;char ch = getchar();while(ch>'9'||ch<'0') {if(ch=='-') f=-1; ch = getchar();}while(ch>='0'&&ch<='9') x = (x<<3) + (x<<1) + ch - '0',  ch = getchar();return x*f; }
    int dir[4][2] = { {1,0}, {-1,0},{0,1},{0,-1} };
    
    typedef struct Pos
    {
        ll x;
        ll y;
        ll z;
    }P;
    
    P a[maxn];
    
    
    map<pair<PII,ll>,ll> cnt;
    
    bool check(ll a, ll b, ll c)
    {
        if(a+b>c&&a-b<c) return true;
        return false;
    }
    
    int main()
    {
        ll n = read();
        bool flag = 1;
        rep(i,1,n)
        {
            ll b[5];
            b[1] = read(), b[2] = read(), b[3] = read();
            sort(b+1,b+1+3);
            a[i].x = b[1] , a[i].y = b[2], a[i].z = b[3];
            if(!check(a[i].x, b[2], b[3])) flag = 0;
            if(flag)
            cnt[mp(mp(a[i].x,a[i].y),a[i].z)]++;
        }
        if(flag) cout<<"YES"<<endl;
        else cout<<"NO"<<endl;
        return 0;
    }
    

    题意:输出指定规模的UN。

    思路:水题模拟。

    view code
    #include<iostream>
    #include<string>
    #include<algorithm>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<map>
    #include <queue>
    #include<sstream>
    #include <stack>
    #include <set>
    #include <bitset>
    #include<vector>
    #define FAST ios::sync_with_stdio(false)
    #define abs(a) ((a)>=0?(a):-(a))
    #define sz(x) ((int)(x).size())
    #define all(x) (x).begin(),(x).end()
    #define mem(a,b) memset(a,b,sizeof(a))
    #define max(a,b) ((a)>(b)?(a):(b))
    #define min(a,b) ((a)<(b)?(a):(b))
    #define rep(i,a,n) for(int i=a;i<=n;++i)
    #define per(i,n,a) for(int i=n;i>=a;--i)
    #define endl '
    '
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    using namespace std;
    typedef long long ll;
    typedef pair<ll,ll> PII;
    const int maxn = 1e5+200;
    const int inf=0x3f3f3f3f;
    const double eps = 1e-7;
    const double pi=acos(-1.0);
    const int mod = 1e9+7;
    inline int lowbit(int x){return x&(-x);}
    ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    void ex_gcd(ll a,ll b,ll &d,ll &x,ll &y){if(!b){d=a,x=1,y=0;}else{ex_gcd(b,a%b,d,y,x);y-=x*(a/b);}}//x=(x%(b/d)+(b/d))%(b/d);
    inline ll qpow(ll a,ll b,ll MOD=mod){ll res=1;a%=MOD;while(b>0){if(b&1)res=res*a%MOD;a=a*a%MOD;b>>=1;}return res;}
    inline ll inv(ll x,ll p){return qpow(x,p-2,p);}
    inline ll Jos(ll n,ll k,ll s=1){ll res=0;rep(i,1,n+1) res=(res+k)%i;return (res+s)%n;}
    inline ll read(){ ll f = 1; ll x = 0;char ch = getchar();while(ch>'9'||ch<'0') {if(ch=='-') f=-1; ch = getchar();}while(ch>='0'&&ch<='9') x = (x<<3) + (x<<1) + ch - '0',  ch = getchar();return x*f; }
    int dir[4][2] = { {1,0}, {-1,0},{0,1},{0,-1} };
    
    ll a[maxn];
    
    int main()
    {
        ll n = read();
        cout<<"*";
        rep(i,1,n-2) cout<<' '; cout<<"* ";
        rep(i,1,n) cout<<"*"; cout<<endl;
        rep(i,1,n-2)
        {
            cout<<"*";
            rep(j,1,n-2) cout<<' ';
            cout<<"* ";
    
            cout<<"*";
            rep(j,1,n-2) cout<<' '; cout<<"*"; cout<<endl;
        }
        rep(i,1,n) cout<<"*";
        cout<<" *";
        rep(i,1,n-2) cout<<' '; cout<<"*";cout<<endl;
        return 0;
    }
    

    J - Jeronimo's List

    题意:给出n个数,q个询问,每次问你第几个数是什么(从小到大) , n <= 1e7。

    思路:直接sort肯定白给。我们可以用桶排序的思想,先预处理好这个完整的数组,然后把每个值映射到1e7的范围里,统计好个数,然后从头到尾走一遍,先遇到的就是靠前的。

    view code
    #include<iostream>
    #include<string>
    #include<algorithm>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<map>
    #include <queue>
    #include<sstream>
    #include <stack>
    #include <set>
    #include <bitset>
    #include<vector>
    #define FAST ios::sync_with_stdio(false)
    #define abs(a) ((a)>=0?(a):-(a))
    #define sz(x) ((int)(x).size())
    #define all(x) (x).begin(),(x).end()
    #define mem(a,b) memset(a,b,sizeof(a))
    #define max(a,b) ((a)>(b)?(a):(b))
    #define min(a,b) ((a)<(b)?(a):(b))
    #define rep(i,a,n) for(int i=a;i<=n;++i)
    #define per(i,n,a) for(int i=n;i>=a;--i)
    #define endl '
    '
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    using namespace std;
    typedef long long ll;
    typedef pair<ll,ll> PII;
    const int maxn = 3e7+200;
    const int inf=0x3f3f3f3f;
    const double eps = 1e-7;
    const double pi=acos(-1.0);
    const int mod = 3e7;
    inline int lowbit(int x){return x&(-x);}
    ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    void ex_gcd(ll a,ll b,ll &d,ll &x,ll &y){if(!b){d=a,x=1,y=0;}else{ex_gcd(b,a%b,d,y,x);y-=x*(a/b);}}//x=(x%(b/d)+(b/d))%(b/d);
    inline ll qpow(ll a,ll b,ll MOD=mod){ll res=1;a%=MOD;while(b>0){if(b&1)res=res*a%MOD;a=a*a%MOD;b>>=1;}return res;}
    inline ll inv(ll x,ll p){return qpow(x,p-2,p);}
    inline ll Jos(ll n,ll k,ll s=1){ll res=0;rep(i,1,n+1) res=(res+k)%i;return (res+s)%n;}
    inline ll read(){ ll f = 1; ll x = 0;char ch = getchar();while(ch>'9'||ch<'0') {if(ch=='-') f=-1; ch = getchar();}while(ch>='0'&&ch<='9') x = (x<<3) + (x<<1) + ch - '0',  ch = getchar();return x*f; }
    int dir[4][2] = { {1,0}, {-1,0},{0,1},{0,-1} };
    
    ll a[maxn];
    ll ans[maxn];
    ll id[maxn];
    
    int main()
    {
       ll n = read(), m = read(), q = read();
       rep(i,1,m) a[i] = read();
       rep(i,m+1,n) a[i] = (a[i-m]+a[i-m+1])%mod;
       rep(i,1,n) ans[a[i]]++;
       ll cur = 1;
       int p = 0;
       rep(i,0,mod-1)
       {
           if(ans[i])
           {
               while(ans[i])
               id[++p] = i, cur ++, ans[i]--;
           }
       }
       rep(i,1,q)
       {
           ll x = read();
           cout<<id[x]<<endl;
       }
       return 0;
    }
    

  • 相关阅读:
    网络故障排除工具 | 快速定位网络故障
    Brocade博科光纤交换机zone配置
    博科Brocade 300光纤交换机配置zone教程
    游戏开发
    第8章 图
    第7章 二叉树
    第6章 树型结构
    第5章 递归
    第4章 字符串、数组和特殊矩阵
    第3章 顺序表的链式存储
  • 原文地址:https://www.cnblogs.com/Bgwithcode/p/13819925.html
Copyright © 2011-2022 走看看