zoukankan      html  css  js  c++  java
  • Codeforces Round #708 (Div. 2) ABC1C2题解

    A. Meximization

    第i位优先放等于i-1的,没有的话就后面随便填了。

    view code
    #include<iostream>
    #include<string>
    #include<algorithm>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<map>
    #include <queue>
    #include<sstream>
    #include <stack>
    #include <set>
    #include <bitset>
    #include<vector>
    #define FAST ios::sync_with_stdio(false)
    #define abs(a) ((a)>=0?(a):-(a))
    #define sz(x) ((int)(x).size())
    #define all(x) (x).begin(),(x).end()
    #define mem(a,b) memset(a,b,sizeof(a))
    #define max(a,b) ((a)>(b)?(a):(b))
    #define min(a,b) ((a)<(b)?(a):(b))
    #define rep(i,a,n) for(int i=a;i<=n;++i)
    #define per(i,n,a) for(int i=n;i>=a;--i)
    #define endl '
    '
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    using namespace std;
    typedef long long ll;
    typedef pair<ll,ll> PII;
    const int maxn = 1e5+200;
    const int inf=0x3f3f3f3f;
    const double eps = 1e-7;
    const double pi=acos(-1.0);
    const int mod = 1e9+7;
    inline int lowbit(int x){return x&(-x);}
    ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    void ex_gcd(ll a,ll b,ll &d,ll &x,ll &y){if(!b){d=a,x=1,y=0;}else{ex_gcd(b,a%b,d,y,x);y-=x*(a/b);}}//x=(x%(b/d)+(b/d))%(b/d);
    inline ll qpow(ll a,ll b,ll MOD=mod){ll res=1;a%=MOD;while(b>0){if(b&1)res=res*a%MOD;a=a*a%MOD;b>>=1;}return res;}
    inline ll inv(ll x,ll p){return qpow(x,p-2,p);}
    inline ll Jos(ll n,ll k,ll s=1){ll res=0;rep(i,1,n+1) res=(res+k)%i;return (res+s)%n;}
    inline ll read(){ ll f = 1; ll x = 0;char ch = getchar();while(ch>'9'||ch<'0') {if(ch=='-') f=-1; ch = getchar();}while(ch>='0'&&ch<='9') x = (x<<3) + (x<<1) + ch - '0',  ch = getchar();return x*f; }
    int dir[4][2] = { {1,0}, {-1,0},{0,1},{0,-1} };
    
    ll a[maxn];
    int vis[maxn];
    
    int main()
    {
        int kase;
        cin>>kase;
        while(kase--)
        {
            ll n = read();
            rep(i,1,n) a[i] = read(), vis[i] = 0;
            sort(a+1,a+1+n);
            int idx = 0;
            rep(i,1,n)
            {
                int flag = 0;
                rep(j,1,n) if(!vis[j]&&a[j]==i-1)
                {
                    flag = 1;
                    cout<<a[j]<<' ';
                    vis[j] = 1;
                    break;
                }
    
                if(!flag) break;
            }
            rep(i,1,n) if(!vis[i]) cout<<a[i]<<' ';
            cout<<endl;
        }
        return 0;
    }
    
    
    

    B. M-arrays

    将a[i]存成模m后余数的形式,那么以每个a[i]与m-a[i]匹配的方式最优。特判一下a[i]为0和a[i]==m-a[i]的情况即可。

    view code
    #include<iostream>
    #include<string>
    #include<algorithm>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<map>
    #include <queue>
    #include<sstream>
    #include <stack>
    #include <set>
    #include <bitset>
    #include<vector>
    #define FAST ios::sync_with_stdio(false)
    #define abs(a) ((a)>=0?(a):-(a))
    #define sz(x) ((int)(x).size())
    #define all(x) (x).begin(),(x).end()
    #define mem(a,b) memset(a,b,sizeof(a))
    #define max(a,b) ((a)>(b)?(a):(b))
    #define min(a,b) ((a)<(b)?(a):(b))
    #define rep(i,a,n) for(int i=a;i<=n;++i)
    #define per(i,n,a) for(int i=n;i>=a;--i)
    #define endl '
    '
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    using namespace std;
    typedef long long ll;
    typedef pair<ll,ll> PII;
    const int maxn = 1e5+200;
    const int inf=0x3f3f3f3f;
    const double eps = 1e-7;
    const double pi=acos(-1.0);
    const int mod = 1e9+7;
    inline int lowbit(int x){return x&(-x);}
    ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    void ex_gcd(ll a,ll b,ll &d,ll &x,ll &y){if(!b){d=a,x=1,y=0;}else{ex_gcd(b,a%b,d,y,x);y-=x*(a/b);}}//x=(x%(b/d)+(b/d))%(b/d);
    inline ll qpow(ll a,ll b,ll MOD=mod){ll res=1;a%=MOD;while(b>0){if(b&1)res=res*a%MOD;a=a*a%MOD;b>>=1;}return res;}
    inline ll inv(ll x,ll p){return qpow(x,p-2,p);}
    inline ll Jos(ll n,ll k,ll s=1){ll res=0;rep(i,1,n+1) res=(res+k)%i;return (res+s)%n;}
    inline ll read(){ ll f = 1; ll x = 0;char ch = getchar();while(ch>'9'||ch<'0') {if(ch=='-') f=-1; ch = getchar();}while(ch>='0'&&ch<='9') x = (x<<3) + (x<<1) + ch - '0',  ch = getchar();return x*f; }
    int dir[4][2] = { {1,0}, {-1,0},{0,1},{0,-1} };
    
    ll a[maxn];
    
    int main()
    {
        int kase;
        cin>>kase;
        while(kase--)
        {
            ll n = read(), m = read();
            rep(i,1,n) a[i] = read(), a[i] %= m;
            map<ll,ll> Map;
            map<ll,ll> vis;
            rep(i,1,n) Map[a[i]]++;
            ll ans = 0;
            rep(i,1,n)
            {
                if(vis[a[i]]) continue;
                if(a[i]==0) ans += 1;
                else
                {
                    if(a[i]==m-a[i])
                    {
                        ans += 1;
                    }
                    else
                    {
                         ll mi = min(Map[a[i]], Map[m-a[i]]);
                        ll ma = max(Map[a[i]], Map[m-a[i]]);
                        ans += 1;
                        ans += max(ma-mi-1,0);
                    }
    
                }
                vis[a[i]] = 1;
                vis[m-a[i]] = 1;
            }
    
            cout<<ans<<endl;
        }
        return 0;
    }
    
    

    k-LCM (hard version)

    两个版本解法大同小异。先看C1,k=3时策略如下:
    如果n为奇数,那么用a = (n-1)/2, b = a, c = 1即可。
    若n为偶数,
    且n/2是奇数,那么a = n/2, b = a, c = 2
    否则直接 a = n/2, b = n/4, c = b即可。
    那么C2的话,就先输出k-3个1,剩下的3个k来处理n-(k-3)又可以直接套C1方法了。

    view code
    #include<iostream>
    #include<string>
    #include<algorithm>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<map>
    #include <queue>
    #include<sstream>
    #include <stack>
    #include <set>
    #include <bitset>
    #include<vector>
    #define FAST ios::sync_with_stdio(false)
    #define abs(a) ((a)>=0?(a):-(a))
    #define sz(x) ((int)(x).size())
    #define all(x) (x).begin(),(x).end()
    #define mem(a,b) memset(a,b,sizeof(a))
    #define max(a,b) ((a)>(b)?(a):(b))
    #define min(a,b) ((a)<(b)?(a):(b))
    #define rep(i,a,n) for(int i=a;i<=n;++i)
    #define per(i,n,a) for(int i=n;i>=a;--i)
    #define endl '
    '
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    using namespace std;
    typedef long long ll;
    typedef pair<ll,ll> PII;
    const int maxn = 1e5+200;
    const int inf=0x3f3f3f3f;
    const double eps = 1e-7;
    const double pi=acos(-1.0);
    const int mod = 1e9+7;
    inline int lowbit(int x){return x&(-x);}
    ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    void ex_gcd(ll a,ll b,ll &d,ll &x,ll &y){if(!b){d=a,x=1,y=0;}else{ex_gcd(b,a%b,d,y,x);y-=x*(a/b);}}//x=(x%(b/d)+(b/d))%(b/d);
    inline ll qpow(ll a,ll b,ll MOD=mod){ll res=1;a%=MOD;while(b>0){if(b&1)res=res*a%MOD;a=a*a%MOD;b>>=1;}return res;}
    inline ll inv(ll x,ll p){return qpow(x,p-2,p);}
    inline ll Jos(ll n,ll k,ll s=1){ll res=0;rep(i,1,n+1) res=(res+k)%i;return (res+s)%n;}
    inline ll read(){ ll f = 1; ll x = 0;char ch = getchar();while(ch>'9'||ch<'0') {if(ch=='-') f=-1; ch = getchar();}while(ch>='0'&&ch<='9') x = (x<<3) + (x<<1) + ch - '0',  ch = getchar();return x*f; }
    int dir[4][2] = { {1,0}, {-1,0},{0,1},{0,-1} };
    
    int main()
    {
        int kase;
        cin>>kase;
        while(kase--)
        {
            ll n = read(), k = read();
            rep(i,4,k) cout<<1<<' ';
            n -= (k-3);
            ll a = 0, b = 0, c = 0;
            if(n&1)
            {
                a = n/2;
                b = a;
                c = 1;
            }
            else
            {
                if((n/2)&1)
                {
                    a = n/2 - 1;
                    b = a;
                    c = 2;
                }
                else
                {
                    a = n/2;
                    c = a/2;
                    b = c;
                }
            }
            cout<<a<<' '<<b<<' '<<c<<endl;
        }
        return 0;
    }
    
    

  • 相关阅读:
    zedboard如何从PL端控制DDR读写(四)
    ZC706以太网扩展板接口
    软件测试作业3--Junit、hamcrest、eclemmat的安装和使用
    软件测试作业2
    软件测试作业1--描述Error
    安装Mysql 5.7.1
    Servlet生命周期+工作原理
    VS中工程的“依赖”,“库目录”,“包含目录”
    Linux C 重定向简单范例
    Java中关键字final用法
  • 原文地址:https://www.cnblogs.com/Bgwithcode/p/14553043.html
Copyright © 2011-2022 走看看