这里只有模板,并不作讲解,仅为路过的各位做一个参考以及用做自己复习的资料,转载注明出处。
中国剩余定理(CRT)
/*Copyright: Copyright (c) 2018
*Created on 2018-11-08
*Author: 十甫
*Version 1.0
*Title: CRT
*Time: inf mins
*/
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
const int size = 15;
typedef long long ll;
int n;
ll a[size], b[size];
inline ll add(ll a, ll b, ll p) {
ll res = 0;
while(b) {
if(b & 1) res = ((res % p) + (a % p)) % p;
a = ((a % p) + (a % p)) % p;
b /= 2;
}
return res;
}
inline void ex_gcd(ll a, ll b, ll &x, ll &y, ll &d) {
if(!b) {
d = a, x = 1, y = 0;
return;
}
ex_gcd(b, a % b, y, x, d);
y -= (a / b) * x;
}
inline ll inv(ll a, ll b) {
ll d, x, y;
ex_gcd(a, b, x, y, d);
return d == 1 ? (x % b + b) % b : -1;
}
ll CRT() {
ll M = 1;
for(int i = 1;i <= n;i++) {
M *= b[i];
}
ll ans = 0;
for(int i = 1;i <= n;i++) {
ans = ((ans % M) + add(add(a[i], M / b[i], M), inv(M / b[i], b[i]), M) % M) % M;
}
return ans;
}
int main() {
scanf("%d", &n);
for(int i = 1;i <= n;i++) {
scanf("%lld", &a[i]);
}
for(int i = 1;i <= n;i++) {
scanf("%lld", &b[i]);
}
printf("%lld
", CRT());
return 0;
}