zoukankan      html  css  js  c++  java
  • HDU——4565So Easy!(矩阵快速幂)

    So Easy!

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 4316    Accepted Submission(s): 1402

    Problem Description
      A sequence Sn is defined as:

    Where a, b, n, m are positive integers.┌x┐is the ceil of x. For example, ┌3.14┐=4. You are to calculate Sn.
      You, a top coder, say: So easy! 
     
    Input
      There are several test cases, each test case in one line contains four positive integers: a, b, n, m. Where 0< a, m < 215, (a-1)2< b < a2, 0 < b, n < 231.The input will finish with the end of file.
     
    Output
      For each the case, output an integer Sn.
     
    Sample Input
    2 3 1 2013
    2 3 2 2013
    2 2 1 2013
     
    Sample Output
    4
    14
    4

     


    难点在于这题是考数学的,只能根据它a与b的范围推出
    递推矩阵
    其中Cn=ceil(a+sqrt(b))
    C0=2,C1=2*a,还有一个坑点就是最后输出的答案要向正方向取模,WA好几次
    代码:

    #include<iostream>
    #include<algorithm>
    #include<cstdlib>
    #include<sstream>
    #include<cstring>
    #include<cstdio>
    #include<string>
    #include<deque>
    #include<stack>
    #include<cmath>
    #include<queue>
    #include<set>
    #include<map>
    using namespace std;
    typedef long long LL;
    #define INF 0x3f3f3f3f
    LL mod;
    struct mat
    {
        LL pos[2][2];
        mat(){memset(pos,0,sizeof(pos));}
    };
    inline mat operator*(const mat &a,const mat &b)
    {
        mat c;
        for (int i=0; i<2; i++)
            for (int j=0; j<2; j++)
                for (int k=0; k<2; k++)
                    c.pos[i][j]+=((a.pos[i][k]%mod)*(b.pos[k][j]%mod)+mod)%mod;
        return c;
    }
    inline mat matpow(mat a,int b)
    {
        mat bas,r;
        r.pos[0][0]=r.pos[1][1]=1;
        bas=a;
        while (b!=0)
        {
            if(b&1)
                r=r*bas;
            bas=bas*bas;
            b>>=1;
        }
        return r;
    }
    int main(void)
    {
        LL a,b,n;   
        while (~scanf("%lld%lld%lld%lld",&a,&b,&n,&mod))
        {
            mat one,t;
            one.pos[0][0]=2*a;one.pos[1][0]=2;
    
            t.pos[0][0]=2*a;t.pos[0][1]=-(a*a-b);
            t.pos[1][0]=1;t.pos[1][1]=0;
    
            t=matpow(t,n);
            one=t*one;
            printf("%lld
    ",(one.pos[1][0]%mod+mod)%mod);
        }
        return 0;
    }
  • 相关阅读:
    407 Trapping Rain Water II 接雨水 II
    406 Queue Reconstruction by Height 根据身高重建队列
    405 Convert a Number to Hexadecimal 数字转换为十六进制数
    404 Sum of Left Leaves 左叶子之和
    403 Frog Jump 青蛙过河
    402 Remove K Digits 移掉K位数字
    401 Binary Watch 二进制手表
    400 Nth Digit 第N个数字
    398 Random Pick Index 随机数索引
    397 Integer Replacement 整数替换
  • 原文地址:https://www.cnblogs.com/Blackops/p/5766361.html
Copyright © 2011-2022 走看看