zoukankan      html  css  js  c++  java
  • HDU 5416 CRB and Tree(前缀思想+DFS)

    CRB and Tree

    Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 2112    Accepted Submission(s): 635

    Problem Description
    CRB has a tree, whose vertices are labeled by 1, 2, …, N. They are connected by N – 1 edges. Each edge has a weight.
    For any two vertices u and v(possibly equal), f(u,v) is xor(exclusive-or) sum of weights of all edges on the path from u to v.
    CRB’s task is for given s, to calculate the number of unordered pairs (u,v) such that f(u,v) = s. Can you help him?
     
    Input
    There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:
    The first line contains an integer N denoting the number of vertices.
    Each of the next N - 1 lines contains three space separated integers ab and c denoting an edge between a and b, whose weight is c.
    The next line contains an integer Q denoting the number of queries.
    Each of the next Q lines contains a single integer s.
    1 ≤ T ≤ 25
    1 ≤ N ≤ 105
    1 ≤ Q ≤ 10
    1 ≤ ab ≤ N
    0 ≤ cs ≤ 105
    It is guaranteed that given edges form a tree.

     
    Output
    For each query, output one line containing the answer.
     
    Sample Input
    1
     
     
    3
    1 2 1
    2 3 2
    3
    2
    3
    4
     
    Sample Output
    1
    1
    0
    Hint
    For the first query, (2, 3) is the only pair that f(u, v) = 2. For the second query, (1, 3) is the only one. For the third query, there are no pair (u, v) such that f(u, v) = 4.

    题目链接:HDU 5416

    和NBUT上一道题很像,只是前者是统计路径异或和为0的个数,这个就稍微复杂一点,统计异或和为s的个数,显然异或和不管是线性的还是树形的都是符合异或性质的

    即prefix_{R}^prefix_{L-1}=prefix_{L~R},由于给的是边权而不是点权,就不用处理LCA这个点的问题了,设s=i^j,则j=s^i,DFS一遍得到储存前缀异或和xorsum个数的cnt[]数组,然后分类讨论一下,若i==j由于u可以等于v,显然组合可能数为cnt[i]*(cnt[i]+1)/2(由于int的取整问题把除以二放到最后),否则显然是cnt[i]*cnt[j],最后由于你遍历的时候除了遍历到0其他情况会重复计算,比如s=1时,遍历到2会组合到3,遍历到3又组合到2,因此若s不为0的话则答案要除以2。

    代码:

    #include <stdio.h>
    #include <bits/stdc++.h>
    using namespace std;
    #define INF 0x3f3f3f3f
    #define CLR(arr,val) memset(arr,val,sizeof(arr))
    #define LC(x) (x<<1)
    #define RC(x) ((x<<1)+1)
    #define MID(x,y) ((x+y)>>1)
    typedef pair<int,int> pii;
    typedef long long LL;
    const double PI=acos(-1.0);
    const int N=1e5+7;
    const int R=1<<17;
    struct edge
    {
        int to,nxt,w;
    };
    edge E[N<<1];
    int head[N],tot;
    LL cnt[R];
    
    void init()
    {
        CLR(head,-1);
        tot=0;
        CLR(cnt,0);
    }
    inline void add(int s,int t,int w)
    {
        E[tot].to=t;
        E[tot].w=w;
        E[tot].nxt=head[s];
        head[s]=tot++;
    }
    void dfs(int u,int sum,int pre)
    {
        ++cnt[sum];
        for (int i=head[u]; ~i; i=E[i].nxt)
        {
            int v=E[i].to;
            if(v!=pre)
                dfs(v,sum^E[i].w,u);
        }
    }
    int main(void)
    {
        int tcase,n,m,a,b,s,c,i;
        scanf("%d",&tcase);
        while (tcase--)
        {
            init();
            scanf("%d",&n);
            for (i=0; i<n-1; ++i)
            {
                scanf("%d%d%d",&a,&b,&c);
                add(a,b,c);
                add(b,a,c);
            }
            dfs(1,0,-1);
            scanf("%d",&m);
            while (m--)
            {
                LL ans=0;
                scanf("%d",&s);
                for (i=0; i<R; ++i)
                {
                    if(i==(s^i))
                        ans+=(cnt[i]*(cnt[i]+1))>>1;
                    else
                        ans+=(cnt[i]*cnt[s^i]);
                }
                if(s)
                    ans>>=1;
                printf("%I64d
    ",ans);
            }
        }
        return 0;
    }
  • 相关阅读:
    网络基础
    Web开发几种常用工具
    win组合键概述(windows10)
    Alfred使用
    Java8之新特性--modules
    jsp九大内置对象和四大作用域
    authtype
    Myeclipse中的快捷键
    如何在Jenkins CI 里调试
    写好unit test的建议和例子
  • 原文地址:https://www.cnblogs.com/Blackops/p/6111462.html
Copyright © 2011-2022 走看看