CRB and Tree
Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 2112 Accepted Submission(s): 635
Problem Description
CRB has a tree, whose vertices are labeled by 1, 2, …, N. They are connected by N – 1 edges. Each edge has a weight.
For any two vertices u and v(possibly equal), f(u,v) is xor(exclusive-or) sum of weights of all edges on the path from u to v.
CRB’s task is for given s, to calculate the number of unordered pairs (u,v) such that f(u,v) = s. Can you help him?
For any two vertices u and v(possibly equal), f(u,v) is xor(exclusive-or) sum of weights of all edges on the path from u to v.
CRB’s task is for given s, to calculate the number of unordered pairs (u,v) such that f(u,v) = s. Can you help him?
Input
There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:
The first line contains an integer N denoting the number of vertices.
Each of the next N - 1 lines contains three space separated integers a, b and c denoting an edge between a and b, whose weight is c.
The next line contains an integer Q denoting the number of queries.
Each of the next Q lines contains a single integer s.
1 ≤ T ≤ 25
1 ≤ N ≤ 105
1 ≤ Q ≤ 10
1 ≤ a, b ≤ N
0 ≤ c, s ≤ 105
It is guaranteed that given edges form a tree.
The first line contains an integer N denoting the number of vertices.
Each of the next N - 1 lines contains three space separated integers a, b and c denoting an edge between a and b, whose weight is c.
The next line contains an integer Q denoting the number of queries.
Each of the next Q lines contains a single integer s.
1 ≤ T ≤ 25
1 ≤ N ≤ 105
1 ≤ Q ≤ 10
1 ≤ a, b ≤ N
0 ≤ c, s ≤ 105
It is guaranteed that given edges form a tree.
Output
For each query, output one line containing the answer.
Sample Input
1
3
1 2 1
2 3 2
3
2
3
4
Sample Output
1
1
0
Hint
For the first query, (2, 3) is the only pair that f(u, v) = 2.
For the second query, (1, 3) is the only one.
For the third query, there are no pair (u, v) such that f(u, v) = 4.
题目链接:HDU 5416
和NBUT上一道题很像,只是前者是统计路径异或和为0的个数,这个就稍微复杂一点,统计异或和为s的个数,显然异或和不管是线性的还是树形的都是符合异或性质的
即prefix_{R}^prefix_{L-1}=prefix_{L~R},由于给的是边权而不是点权,就不用处理LCA这个点的问题了,设s=i^j,则j=s^i,DFS一遍得到储存前缀异或和xorsum个数的cnt[]数组,然后分类讨论一下,若i==j由于u可以等于v,显然组合可能数为cnt[i]*(cnt[i]+1)/2(由于int的取整问题把除以二放到最后),否则显然是cnt[i]*cnt[j],最后由于你遍历的时候除了遍历到0其他情况会重复计算,比如s=1时,遍历到2会组合到3,遍历到3又组合到2,因此若s不为0的话则答案要除以2。
代码:
#include <stdio.h> #include <bits/stdc++.h> using namespace std; #define INF 0x3f3f3f3f #define CLR(arr,val) memset(arr,val,sizeof(arr)) #define LC(x) (x<<1) #define RC(x) ((x<<1)+1) #define MID(x,y) ((x+y)>>1) typedef pair<int,int> pii; typedef long long LL; const double PI=acos(-1.0); const int N=1e5+7; const int R=1<<17; struct edge { int to,nxt,w; }; edge E[N<<1]; int head[N],tot; LL cnt[R]; void init() { CLR(head,-1); tot=0; CLR(cnt,0); } inline void add(int s,int t,int w) { E[tot].to=t; E[tot].w=w; E[tot].nxt=head[s]; head[s]=tot++; } void dfs(int u,int sum,int pre) { ++cnt[sum]; for (int i=head[u]; ~i; i=E[i].nxt) { int v=E[i].to; if(v!=pre) dfs(v,sum^E[i].w,u); } } int main(void) { int tcase,n,m,a,b,s,c,i; scanf("%d",&tcase); while (tcase--) { init(); scanf("%d",&n); for (i=0; i<n-1; ++i) { scanf("%d%d%d",&a,&b,&c); add(a,b,c); add(b,a,c); } dfs(1,0,-1); scanf("%d",&m); while (m--) { LL ans=0; scanf("%d",&s); for (i=0; i<R; ++i) { if(i==(s^i)) ans+=(cnt[i]*(cnt[i]+1))>>1; else ans+=(cnt[i]*cnt[s^i]); } if(s) ans>>=1; printf("%I64d ",ans); } } return 0; }