zoukankan      html  css  js  c++  java
  • SPOJ HIGH(生成树计数,高斯消元求行列式)

    HIGH - Highways

    no tags 

    In some countries building highways takes a lot of time... Maybe that's because there are many possiblities to construct a network of highways and engineers can't make up their minds which one to choose. Suppose we have a list of cities that can be connected directly. Your task is to count how many ways there are to build such a network that between every two cities there exists exactly one path. Two networks differ if there are two cities that are connected directly in the first case and aren't in the second case. At most one highway connects two cities. No highway connects a city to itself. Highways are two-way.

    Input

    The input begins with the integer t, the number of test cases (equal to about 1000). Then t test cases follow. The first line of each test case contains two integers, the number of cities (1<=n<=12) and the number of direct connections between them. Each next line contains two integers a and b, which are numbers of cities that can be connected. Cities are numbered from 1 to n. Consecutive test cases are separated with one blank line.

    Output

    The number of ways to build the network, for every test case in a separate line. Assume that when there is only one city, the answer should be 1. The answer will fit in a signed 64-bit integer.

    Example

    Sample input:
    4
    4 5
    3 4
    4 2
    2 3
    1 2
    1 3
    
    2 1
    2 1
    
    1 0
    
    3 3
    1 2
    2 3
    3 1
    
    Sample output:
    8
    1
    1
    3
    
    

     

    题目链接:SPOJ HIGH

    高斯消元求行列式入门题。矩阵树定理,用D矩阵和A矩阵作差得到G,然后求G的任意一个$n−1$阶矩阵行列式,其中用到高斯消元

    代码:

    #include <stdio.h>
    #include <iostream>
    #include <algorithm>
    #include <cstdlib>
    #include <cstring>
    #include <bitset>
    #include <string>
    #include <stack>
    #include <cmath>
    #include <queue>
    #include <set>
    #include <map>
    using namespace std;
    #define INF 0x3f3f3f3f
    #define LC(x) (x<<1)
    #define RC(x) ((x<<1)+1)
    #define MID(x,y) ((x+y)>>1)
    #define fin(name) freopen(name,"r",stdin)
    #define fout(name) freopen(name,"w",stdout)
    #define CLR(arr,val) memset(arr,val,sizeof(arr))
    #define FAST_IO ios::sync_with_stdio(false);cin.tie(0);
    typedef pair<int, int> pii;
    typedef long long LL;
    const double PI = acos(-1.0);
    const int N = 15;
    double Mat[N][N];
    void init()
    {
        CLR(Mat, 0);
    }
    double Gaussian(int ne, int nv)
    {
        int i, j;
        double ans = 1;
        for (int ce = 1, cv = 1; ce <= ne && cv <= nv; ++ce, ++cv)
        {
            int te = ce;
            for (i = ce + 1; i <= ne; ++i)
                if (fabs(Mat[i][cv]) > fabs(Mat[ce][cv]))
                    te = ce;
            if (Mat[te][cv] == 0)
                return 0;
            if (te != ce)
            {
                for (i = cv; i <= nv; ++i)
                    swap(Mat[ce][i], Mat[te][i]);
                ans *= -1;
            }
            ans *= Mat[ce][cv];
            for (j = cv + 1; j <= nv; ++j)
                Mat[ce][j] /= Mat[ce][cv];
            for (i = ce + 1; i <= ne; ++i)
                for (j = cv + 1; j <= nv; ++j)
                    Mat[i][j] -= Mat[i][cv] * Mat[ce][j];
        }
        return ans;
    }
    int main(void)
    {
        int T;
        int n, m, u, v, i;
        scanf("%d", &T);
        while (T--)
        {
            init();
            scanf("%d%d", &n, &m);
            for (i = 0; i < m; ++i)
            {
                scanf("%d%d", &u, &v);
                ++Mat[u][u];
                ++Mat[v][v];
                Mat[u][v] = -1;
                Mat[v][u] = -1;
            }
            debug(n,n);
            printf("%.0f
    ", Gaussian(n - 1, n - 1));
        }
        return 0;
    }
  • 相关阅读:
    influxdb服务器 relay
    browse-agent type and curl post
    使用 Ansible 管理 MySQL 复制
    ansible里的item和with_items
    Ansible 从MySQL数据库添加或删除用户
    ansibel---tag模块
    ll | wc -l的陷阱
    ansible 判断和循环
    Ansible详解(二)
    Ansible详解(一)
  • 原文地址:https://www.cnblogs.com/Blackops/p/7565443.html
Copyright © 2011-2022 走看看