zoukankan      html  css  js  c++  java
  • 哈达玛积

      哈达玛积(Hadamard product)是矩阵的一类运算,若 $A=(a_{ij})$ 和 $B=(b_{ij})$ 是两个同阶矩阵,若,则称矩阵 $c_{ij}=a_{ij} imes b_{ij}$ 为 $A$ 和 $B$ 的哈达玛积,或称基本积。

    1 定义

      设  $A, B in mathbb{C}^{m imes n}$  且  $A=left{a_{i j} ight}$,$B=left[b_{i j} ight]$, 称  $m imes n$  矩阵

        $left[egin{array}{cccc}a_{11} b_{11} & a_{12} b_{12} & cdots & a_{1 n} b_{1 n} \a_{21} b_{21} & a_{22} b_{22} & cdots & a_{2 n} b_{2 n} \vdots & vdots & & vdots \a_{m 1} b_{m 1} & a_{m 2} b_{m 2} & cdots & a_{m n} b_{m n}end{array} ight]$

      为矩阵 $A$ 与 $B$ 的哈达玛(Hadamard)积,记作  $A circ B$ 。

          

         $left(egin{array}{lll}mathrm{a}_{11} & mathrm{a}_{12} & mathrm{a}_{13} \mathrm{a}_{21} & mathrm{a}_{22} & mathrm{a}_{23} \mathrm{a}_{31} & mathrm{a}_{32} & mathrm{a}_{33}end{array} ight) odotleft(egin{array}{lll}mathrm{b}_{11} & mathrm{~b}_{12} & mathrm{~b}_{13} \mathrm{~b}_{21} & mathrm{~b}_{22} & mathrm{~b}_{23} \mathrm{~b}_{31} & mathrm{~b}_{32} & mathrm{~b}_{33}end{array} ight)=left(egin{array}{llllll}mathrm{a}_{11} & mathrm{~b}_{11} & mathrm{a}_{12} & mathrm{~b}_{12} & mathrm{a}_{13} & mathrm{~b}_{13} \mathrm{a}_{21} & mathrm{~b}_{21} & mathrm{a}_{22} & mathrm{~b}_{22} & mathrm{a}_{23} & mathrm{~b}_{23} \mathrm{a}_{31} & mathrm{~b}_{31} & mathrm{a}_{32} & mathrm{~b}_{32} & mathrm{a}_{33} & mathrm{~b}_{33}end{array} ight)$

    2 哈达玛积的主要性质

      由矩阵的 Hadamard 积的定义显然有

        $A circ 0=0 circ A=0, A circ B=B circ A,(A+B) circ C=(A circ C)+(B circ C)$

      并且
        $A circ B=P(A otimes B) Q$
      其中
        $egin{array}{l}P=E_{11}+E_{2, m+2}+ldots+E_{m, m^{2}} in mathbb{R}^{m imes m^{2}} \Q=E_{11}+E_{n+2,2}+ldots+E_{n^{2} imes n} in mathbb{R}^{n^{2} imes n}end{array}$
      特别地,若 $m=n$ ,则 $Q=P^{T}$ ,且

        $A circ B=P(A otimes B) P^{T}$
      因而 $A circ B$ 是 $A otimes B$ 的主子阵,故有下面的命题。
      命题1 设 $A, B in mathbb{C}^{m imes n}$, $operatorname{rankA}=r_{1}, operatorname{rank} B=r_{2}$ , 则
        $operatorname{rank}(A circ B) leqslant r_{1} r_{2}$
      命题2 设 $A, B in mathbb{C}^{m imes n}$,$A, B geq 0$, 则
        $lambda_{min }(A circ B) geqslant lambda_{min }(A) lambda_{min }(B)$
      命题3 设 $A, B in mathbb{C}^{m imes n}$, 若 $A >0, B>0$ , 则 $A circ B>0$。
      命题4 设 $A, B in mathbb{C}^{m imes n}$ ,
        $D=operatorname{diag}left(d_{1}, d_{2}, ldots, d_{n} ight), E=operatorname{diag}left(e_{1}, ldots, e_{n} ight)$
      则
        $(D A) circ(B E)=A circ(D B E)=(D A E) circ B$

    因上求缘,果上努力~~~~ 作者:每天卷学习,转载请注明原文链接:https://www.cnblogs.com/BlairGrowing/p/15416393.html

  • 相关阅读:
    [MacOS]Sublime text3 安装(一)
    [RHEL8]开启BBR
    PAT Advanced 1136 A Delayed Palindrome (20分)
    PAT Advanced 1144 The Missing Number (20分)
    PAT Advanced 1041 Be Unique (20分)
    PAT Advanced 1025 PAT Ranking (25分)
    PAT Advanced 1022 Digital Library (30分)
    PAT Advanced 1019 General Palindromic Number (20分)
    PAT Advanced 1011 World Cup Betting (20分)
    PAT Advanced 1102 Invert a Binary Tree (25分)
  • 原文地址:https://www.cnblogs.com/BlairGrowing/p/15416393.html
Copyright © 2011-2022 走看看