zoukankan      html  css  js  c++  java
  • Pytorch——torch.nn.init 中实现的初始化函数

    参考:官方

    1. 均匀分布

      torch.nn.init.uniform_(tensor, a=0.0, b=1.0)

    解释:

      Fills the input Tensor with values drawn from the uniform distribution $mathcal{U}(a, b)$

    参数:

    • tensor – an n-dimensional torch.Tensor

    • a – the lower bound of the uniform distribution

    • b – the upper bound of the uniform distribution

    例子:

    w = torch.empty(2, 2)
    print('before init w = 
    ',w)
    torch.nn.init.uniform_(w, a=0.0, b=1.0)
    print('after init w = 
    ',w)

    结果:

    before init w = 
     tensor([[1.4013e-45, 0.0000e+00],
            [0.0000e+00, 0.0000e+00]])
    after init w = 
     tensor([[0.8658, 0.3711],
            [0.8950, 0.1419]])

     

    2. 高斯分布

    torch.nn.init.normal_(tensor, mean=0.0, std=1.0)

    解释:

      Fills the input Tensor with values drawn from the normal distribution $mathcal{N}left( ext { mean, } operatorname{std}^{2} ight) $.

    参数:

    • tensor – an n-dimensional torch.Tensor

    • mean – the mean of the normal distribution

    • std – the standard deviation of the normal distribution

    例子:

    w = torch.empty(2, 2)
    print('before init w = 
    ',w)
    torch.nn.init.normal_(w,mean=10,std=0.01)
    print('after init w = 
    ',w)

    结果:

    before init w = 
     tensor([[2.3877e-38, 1.0010e+01],
            [2.2421e-44, 0.0000e+00]])
    after init w = 
     tensor([[10.0128, 10.0086],
            [10.0064,  9.9983]])

    3. 初始化为常数

    torch.nn.init.constant_(tensor, val)

    解释:

      Fills the input Tensor with the value $val$.

    参数:

    • tensor – an n-dimensional torch.Tensor

    • val – the value to fill the tensor with

    例子:

    w = torch.empty(2, 2)
    print('before init w = 
    ',w)
    torch.nn.init.constant_(w,18)
    print('after init w = 
    ',w)

    结果:

    before init w = 
     tensor([[1.4013e-45, 0.0000e+00],
            [0.0000e+00, 0.0000e+00]])
    after init w = 
     tensor([[18., 18.],
            [18., 18.]])

     

    4.初始化为全 1

    torch.nn.init.ones_(tensor)

    解释:

      Fills the input Tensor with the scalar value 1.

    参数:

    • tensor – an n-dimensional torch.Tensor

    例子:

    w = torch.empty(2, 2)
    print('before init w = 
    ',w)
    torch.nn.init.ones_(w)
    print('after init w = 
    ',w)

    结果:

    before init w = 
     tensor([[9.1477e-41, 0.0000e+00],
            [8.4078e-44, 0.0000e+00]])
    after init w = 
     tensor([[1., 1.],
            [1., 1.]])

    5.初始化为全 0

    torch.nn.init.zeros_(tensor)

    解释:

      Fills the input Tensor with the scalar value 0.

    参数:

    • tensor – an n-dimensional torch.Tensor

    例子:

    w = torch.empty(2, 2)
    print('before init w = 
    ',w)
    torch.nn.init.zeros_(w)
    print('after init w = 
    ',w)

    结果:

    before init w = 
     tensor([[9.1477e-41, 0.0000e+00],
            [4.4842e-44, 0.0000e+00]])
    after init w = 
     tensor([[0., 0.],
            [0., 0.]])

    6.初始化为对角单位阵

    torch.nn.init.eye_(tensor)

    解释:

      Fills the 2-dimensional input Tensor with the identity matrix. Preserves the identity of the inputs in Linear layers, where as many inputs are preserved as possible.

    参数:

    • tensor – a 2-dimensional torch.Tensor

    例子:

    w = torch.empty(2, 2)
    print('before init w = 
    ',w)
    torch.nn.init.eye_(w)
    print('after init w = 
    ',w)

    结果:

    before init w = 
     tensor([[1., 1.],
            [1., 1.]])
    after init w = 
     tensor([[1., 0.],
            [0., 1.]])

    7 .Xavier 均匀分布

    torch.nn.init.xavier_uniform_(tensorgain=1.0)

    解释:

      Fills the input Tensor with values according to the method described in Understanding the difficulty of training deep feedforward neural networks - Glorot, X. & Bengio, Y. (2010), using a uniform distribution. The resulting tensor will have values sampled from $U(a,a) $ where

        $a=operatorname{gain} imes sqrt{frac{6}{ ext { fan_in }+ ext { fan_out }}}$

    参数:

    • tensor – an n-dimensional torch.Tensor
    • gain – an optional scaling factor

    例子:

    w = torch.empty(2, 2)
    print('before init w = 
    ',w)
    torch.nn.init.xavier_uniform_(w,gain=nn.init.calculate_gain('relu'))
    print('after init w = 
    ',w)

    结果:

    before init w = 
     tensor([[1.4013e-45, 0.0000e+00],
            [0.0000e+00, 0.0000e+00]])
    after init w = 
     tensor([[ 0.6120, -0.9743],
            [-1.5010,  0.5827]])

    例子:

    gain=nn.init.calculate_gain('relu')
    gain

    结果:

    1.4142135623730951

    例子:

    gain=nn.init.calculate_gain('sigmoid')
    gain

    结果:

    1

    8 .Xavier 高斯分布

    torch.nn.init.xavier_normal_(tensorgain=1.0)

    解释:

      Fills the input Tensor with values according to the method described in Understanding the difficulty of training deep feedforward neural networks - Glorot, X. & Bengio, Y. (2010), using a normal distribution. The resulting tensor will have values sampled from  $mathcal{N}left(0, mathrm{std}^{2} ight)$  where

        $operatorname{std}=operatorname{gain} imes sqrt{frac{2}{ ext { fan_in }+ ext { fan_out }}}$

    参数:

    • tensor – an n-dimensional torch.Tensor

    • gain – an optional scaling factor

    例子:

    w = torch.empty(2, 2)
    print('before init w = 
    ',w)
    torch.nn.init.xavier_normal_(w,gain=nn.init.calculate_gain('relu'))
    print('after init w = 
    ',w)

    结果:

    before init w = 
     tensor([[0., 0.],
            [0., 0.]])
    after init w = 
     tensor([[ 0.9703,  1.0088],
            [ 1.1271, -0.0602]])

    9.He均匀分布

    torch.nn.init.kaiming_uniform_(tensora=0mode='fan_in'nonlinearity='leaky_relu')

    解释:

      Fills the input Tensor with values according to the method described in Delving deep into rectifiers: Surpassing humanlevel performance on ImageNet classification - He, K. et al. (2015), using a uniform distribution. The resulting tensor will have values sampled from $mathcal{U}(- bound, bound)$ where

        $ ext { bound }= ext { gain } imes sqrt{frac{3}{ ext { fan_mode }}}$

    参数:

    • tensor – an n-dimensional torch.Tensor

    • a – the negative slope of the rectifier used after this layer (only used with 'leaky_relu')

    • mode – either 'fan_in' (default) or 'fan_out'. Choosing 'fan_in' preserves the magnitude of the variance of the weights in the forward pass. Choosing 'fan_out' preserves the magnitudes in the backwards pass.

    • nonlinearity – the non-linear function (nn.functional name), recommended to use only with 'relu' or 'leaky_relu' (default).

    例子:

    w = torch.empty(2, 2)
    print('before init w = 
    ',w)
    torch.nn.init.kaiming_uniform_(w, mode='fan_in', nonlinearity='relu')
    print('after init w = 
    ',w)

    结果:

    before init w = 
     tensor([[-3.6893e+19,  1.3658e+00],
            [ 2.2421e-44,  0.0000e+00]])
    after init w = 
     tensor([[-0.8456,  1.3498],
            [-0.8480, -1.1506]])

    10.He高斯分布

    torch.nn.init.kaiming_normal_(tensora=0mode='fan_in'nonlinearity='leaky_relu')

    解释:

      Fills the input Tensor with values according to the method described in Delving deep into rectifiers: Surpassing humanlevel performance on ImageNet classification - He, K. et al. (2015), using a normal distribution. The resulting tensor will have values sampled from $mathcal{N}left(0, mathrm{std}^{2} ight)$ where

        $operatorname{std}=frac{ ext { gain }}{sqrt{ ext { fan_mode }}}$

    参数:

    • tensor – an n-dimensional torch.Tensor

    • a – the negative slope of the rectifier used after this layer (only used with 'leaky_relu')

    • mode – either 'fan_in' (default) or 'fan_out'. Choosing 'fan_in' preserves the magnitude of the variance of the weights in the forward pass. Choosing 'fan_out' preserves the magnitudes in the backwards pass.

    • nonlinearity – the non-linear function (nn.functional name), recommended to use only with 'relu' or 'leaky_relu' (default).

    例子:

    w = torch.empty(2, 2)
    print('before init w = 
    ',w)
    torch.nn.init.kaiming_normal_(w, mode='fan_out', nonlinearity='relu')
    print('after init w = 
    ',w)

    结果:

    before init w = 
     tensor([[-0.8456,  1.3498],
            [-0.8480, -1.1506]])
    after init w = 
     tensor([[-1.0357, -1.1732],
            [ 0.1517,  0.4935]])

    因上求缘,果上努力~~~~ 作者:希望每天涨粉,转载请注明原文链接:https://www.cnblogs.com/BlairGrowing/p/15428616.html

  • 相关阅读:
    treeview(树加载)
    9.SQL存储过程实例详解
    面向对象之封装
    cookie和session
    自定义web框架
    IO多路复用
    协程
    concurrent.futures模块(进程池/线程池)
    死锁与递归锁及信号量等
    并发编程之多线程
  • 原文地址:https://www.cnblogs.com/BlairGrowing/p/15428616.html
Copyright © 2011-2022 走看看