zoukankan      html  css  js  c++  java
  • 稀疏自编码器手写 Learner

    1 导入实验需要的包

    import torch
    import torch.nn as nn
    import torch.nn.functional
    import torch.optim as optim
    import torch.utils.data.dataloader as dataloader
    
    import torchvision
    import torchvision.datasets as datasets
    import torchvision.transforms as transforms
    
    import os,time
    import matplotlib.pyplot as plt
    from PIL import Image

    2 读取数据

    def get_mnist_loader(batch_size=100, shuffle=True):
        """
        :return: train_loader, test_loader
        """
        train_dataset = datasets.MNIST(root='../data',
                              train=True,
                              transform=torchvision.transforms.ToTensor(),
                              download=True)
        test_dataset = datasets.MNIST(root='../data',
                             train=False,
                             transform=torchvision.transforms.ToTensor(),
                             download=True)
    
        train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                                                   batch_size=batch_size,
                                                   shuffle=shuffle)
        test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
                                                  batch_size=batch_size,
                                                  shuffle=shuffle)
        return train_loader, test_loader

    3 KL散度

    def KL_devergence(p, q):
        """
        Calculate the KL-divergence of (p,q)
        :param p:
        :param q:
        :return:
        """
        q = torch.nn.functional.softmax(q, dim=0)
        q = torch.sum(q, dim=0)/batch_size  # dim:缩减的维度,q的第一维是batch维,即大小为batch_size大小,此处是将第j个神经元在batch_size个输入下所有的输出取平均
        s1 = torch.sum(p*torch.log(p/q))
        s2 = torch.sum((1-p)*torch.log((1-p)/(1-q)))
        return s1+s2

    4 自编码器

    class AutoEncoder(nn.Module):
        def __init__(self, in_dim=784, hidden_size=30, out_dim=784):
            super(AutoEncoder, self).__init__()
            self.encoder = nn.Sequential(
                nn.Linear(in_features=in_dim, out_features=hidden_size),
                nn.ReLU()
            )
            self.decoder = nn.Sequential(
                nn.Linear(in_features=hidden_size, out_features=out_dim),
                nn.Sigmoid()
            )
    
        def forward(self, x):
            encoder_out = self.encoder(x)
            decoder_out = self.decoder(encoder_out)
            return encoder_out, decoder_out

    5 超参数定义

    batch_size = 100
    num_epochs = 50
    in_dim = 784
    hidden_size = 30
    expect_tho = 0.05

    6 训练

    train_loader, test_loader = get_mnist_loader(batch_size=batch_size, shuffle=True)
    autoEncoder = AutoEncoder(in_dim=in_dim, hidden_size=hidden_size, out_dim=in_dim)
    if torch.cuda.is_available():
        autoEncoder.cuda()  # 注:将模型放到GPU上,因此后续传入的数据必须也在GPU上
    
    Loss = nn.BCELoss()
    Optimizer = optim.Adam(autoEncoder.parameters(), lr=0.001)
    
    # 定义期望平均激活值和KL散度的权重
    tho_tensor = torch.FloatTensor([expect_tho for _ in range(hidden_size)])
    if torch.cuda.is_available():
        tho_tensor = tho_tensor.cuda()
    _beta = 3
    
    # def kl_1(p, q):
    #     p = torch.nn.functional.softmax(p, dim=-1)
    #     _kl = torch.sum(p*(torch.log_softmax(p,dim=-1)) - torch.nn.functional.log_softmax(q, dim=-1),1)
    #     return torch.mean(_kl)
    
    for epoch in range(num_epochs):
        time_epoch_start = time.time()
        for batch_index, (train_data, train_label) in enumerate(train_loader):
            if torch.cuda.is_available():
                train_data = train_data.cuda()
                train_label = train_label.cuda()
            input_data = train_data.view(train_data.size(0), -1)
            encoder_out, decoder_out = autoEncoder(input_data)
            loss = Loss(decoder_out, input_data)
    
            # 计算并增加KL散度到loss
            _kl = KL_devergence(tho_tensor, encoder_out)
            loss += _beta * _kl
    
            Optimizer.zero_grad()
            loss.backward()
            Optimizer.step()
    
            print('Epoch: {}, Loss: {:.4f}, Time: {:.2f}'.format(epoch + 1, loss, time.time() - time_epoch_start))
  • 相关阅读:
    超赞!不容错过的5款实用网页开发和设计工具
    如何从平面设计转行到UI设计?
    线段树
    RMQ
    Splay
    Treap
    *模板--矩阵
    最小生成树
    hash
    ac自动机
  • 原文地址:https://www.cnblogs.com/BlairGrowing/p/15717519.html
Copyright © 2011-2022 走看看