转自:https://blog.csdn.net/u012162613/article/details/45920827
1.思想
t-SNE(t-distributed stochastic neighbor embedding)是用于降维的一种机器学习算法,是由 Laurens van der Maaten 和 Geoffrey Hinton在08年提出来。
此外,t-SNE 是一种非线性降维算法,非常适用于高维数据降维到2维或者3维,进行可视化。
2.简单例子
print("Computing t-SNE embedding") tsne = manifold.TSNE(n_components=3, init='pca', random_state=0) t0 = time() X_tsne = tsne.fit_transform(X) plot_embedding_2d(X_tsne[:,0:2],"t-SNE 2D") plot_embedding_3d(X_tsne,"t-SNE 3D (time %.2fs)" %(time() - t0))