zoukankan      html  css  js  c++  java
  • IMDB情感分类学习

    需要学习链接:

    使用pandas做预处理,https://blog.csdn.net/mpk_no1/article/details/71698725

    https://www.jianshu.com/p/8d3f929c9444

    1.想法:

    1.首先是要读取数据集,建立字典,将word转为id准备输入;

    2.想获取数据文本的长度分布,然后做截断,但不知道怎么写;

    但是链接中考虑的更全面

    1.去掉非ASCII字符,2.去掉换行符,3.转换为小写。

    https://blog.csdn.net/icbm/article/details/79747024 非ASCII字符:

    [^x00-x7f]

    比如这样。就是不在ASCII编码中的字符吧。

    其中用到了pandas库,

    2.使用RNN+一层MLP:

    class RNN(nn.Module):
    
        def __init__(self, num_classes, input_size, hidden_size, num_layers, sequence_length):
            super(RNN, self).__init__()
    
            self.num_classes = num_classes
            self.num_layers = num_layers
            self.input_size = input_size
            self.hidden_size = hidden_size
            self.sequence_length = sequence_length#1000
            self.embedding_size = embedding_size
    
            self.embedding = nn.Embedding(input_size, embedding_size)#这里使用的emb_size是200维的。
            self.rnn = nn.RNN(input_size=embedding_size, hidden_size=hidden_size, batch_first=True)
            self.fc = nn.Linear(hidden_size * 2, num_classes)  # 相较于之前,又多了一个全连接层
    
        def forward(self, x):
            # Initialize hidden and cell states
            # (num_layers * num_directions, batch, hidden_size) for batch_first=True
            h_0 = self.init_hidden(x.size(0))
            embeddings = self.embedding(x)
            # Reshape input
            embeddings.view(x.size(0), self.sequence_length, self.embedding_size)  
    
            # Propagate input through RNN
            # Input: (batch, seq_len, input_size)
            # h_0: (num_layers * num_directions, batch, hidden_size)
    
            out, _ = self.rnn(embeddings, h_0)  # 由于设置了batch_first=True,输出格式为(batch,seq_length,hidden_size)
            out=out.permute([1,0,2]) #需要赋值啊亲。
            out = self.fc(torch.cat((out[0], out[-1]), -1))
            return out.view(-1, num_classes)
    
        def init_hidden(self,size):
            return torch.zeros(self.num_layers, size, self.hidden_size).to(device)

    trainloss和testloss一直都很高

    epoch:0,train loss:0.7623,train accuracy:0.51,test loss 0.8200,test accuracy:0.52,time:32.62
    epoch:1,train loss:0.7542,train accuracy:0.53,test loss 0.7367,test accuracy:0.52,time:31.89
    epoch:2,train loss:0.7422,train accuracy:0.53,test loss 0.7173,test accuracy:0.51,time:32.06
    epoch:3,train loss:0.7572,train accuracy:0.53,test loss 0.7470,test accuracy:0.53,time:31.55
    epoch:4,train loss:0.7444,train accuracy:0.53,test loss 0.7474,test accuracy:0.51,time:31.59

    3.尝试加入固定的embedding,glove的100维的 

    一点问题:

    这里我在add_scalar的时候,要求输入,然后我就用这个zero生成了输出数据:

    writer = SummaryWriter('runs/IMDB_RNN_500/')
    #simu_input=torch.zeros([batch_size,sequence_length,embedding_size])
    #BUG:Expected tensor for argument #1 'indices' to have scalar type Long; but got torch.FloatTensor instead (while checking arguments for embedding)
    writer.add_graph(model,simu_input)
    import torch
    a=torch.zeros([1,2,3])
    print(type(a))
    print(a.dtype)
    
    #输出:
    <class 'torch.Tensor'>
    torch.float32 #默认为float,而emb需要的是int
    a=torch.zeros([1,2,3],dtype=torch.int)
    print(type(a))
    print(a.dtype)
    
    #结果:
    <class 'torch.Tensor'>
    torch.int32
    #这样设置就ok

    torch中的dtypehttps://ptorch.com/news/187.html

    最终还是选择了像这样对loader进行遍历iteration,...

    dataiter = iter(train_loader)
    sentences,labels=dataiter.__next__()
    writer.add_graph(model,sentences.to(device))
    
    
    runtimeWarning: Iterating over a tensor might cause the trace to be incorrect. 
    Passing a tensor of different shape won
    't change the number of iterations executed (and might lead to errors or silently give incorrect results). 'incorrect results).', category=RuntimeWarning) Expected hidden size (1, tensor(32), 100), got (tensor(2), tensor(32), tensor(100)) Error occurs, No graph saved

     使用RNN保存了train和test的loss:

      

    反正是损失一直都很高

    4.将RNN换为双向LSTM/GRU

    效果不错啊,双向LSTM!比单向的RNN好太多了

    epoch:0,train accuracy:0.72,test accuracy 0.79,time:30.01
    epoch:1,train accuracy:0.83,test accuracy 0.82,time:30.31
    epoch:2,train accuracy:0.85,test accuracy 0.84,time:30.29
    epoch:3,train accuracy:0.87,test accuracy 0.82,time:29.88
    epoch:4,train accuracy:0.89,test accuracy 0.83,time:30.89

     就精度各方面都有高,损失函数也在稳步下降,想把两个curve放到一个里。。但是这里横轴不一样,不可。

     试下GRU:

    epoch:0,train accuracy:0.77,test accuracy 0.76,time:30.42
    epoch:1,train accuracy:0.84,test accuracy 0.82,time:30.37
    epoch:2,train accuracy:0.86,test accuracy 0.81,time:30.59
    epoch:3,train accuracy:0.87,test accuracy 0.82,time:30.74
    epoch:4,train accuracy:0.87,test accuracy 0.83,time:29.96

    效果也很不错的。

    还是LSTM效果更好一点。

    5.CNN做情感分类

     https://github.com/jiajunhua/ShusenTang-Dive-into-DL-PyTorch/blob/master/docs/chapter10_natural-language-processing/10.7_sentiment-analysis-rnn.md

    这个链接里给出了一个CNN的text,所以就用一下,然后它的模型:

    进行了实验:

    import torch
    import torch.nn as nn
    m=nn.Conv2d(1,1,(3,100))#(输入通道数,输出通道数,(kernel_size1,kernel_size2))
    pool=nn.MaxPool2d((498,1))#这里是进行pool的(kernel_size1,kenel_size2),没有什么疑问。
    inp=torch.randn(32,1,500,100)
    a=m(inp)
    b=pool(a)
    
    #结果:
    >>> a.size()
    torch.Size([32, 1, 498, 1])
    >>> b.size()
    torch.Size([32, 1, 1, 1])

    结果:

    epoch:0,train accuracy:0.72,test accuracy 0.77,time:3.59
    epoch:1,train accuracy:0.77,test accuracy 0.78,time:3.14
    epoch:2,train accuracy:0.79,test accuracy 0.78,time:3.19
    epoch:3,train accuracy:0.79,test accuracy 0.80,time:3.20
    epoch:4,train accuracy:0.79,test accuracy 0.79,time:3.17

    效果还ok,但确实是速度非常地快。

    7.将模型保存、读取模型进行预测,

    或者直接写一个predict函数,其中读取test文件,然后进行预测,之后结果存储到文件,然后上传到kaggle预测啊。

    https://github.com/jiajunhua/ShusenTang-Dive-into-DL-PyTorch/blob/master/docs/chapter10_natural-language-processing/10.7_sentiment-analysis-rnn.md

    1.这里在预测时每次都是单个的句子,那是否可以用batch_size一次预测32或64个句子呢?

    2.这里对句子没有进行补0,补到500,那么对单个句子可能是适用的,如果是对一个batch的数据呢?是否需要补0?

    3.还是说,针对这个预测,只能一句一句地预测?

    这样直接写入的后果就是:

        pred.append((testData['id'][i],label.data.max(1)[1].cpu()))#这里只是转到cpu上存储,它的类型还是个tensor
        #写入文件中
        with open('./data/summit.tsv','w') as f:
            for data in pred:
                f.write(str(data[0])+'	'+str(data[1]))

    https://www.kaggle.com/c/word2vec-nlp-tutorial

    提交之后是0.82,要求是转换成csv形式的,那么就这道题来说,该怎么去提高呢?我有以下的几个想法可以尝试:

    1.首先就是对文本做更多的预处理,参考那一个博客,正则化去掉一些,减少oov吧。

    2.对word_embeding做fine tune。

    3.尝试使用其他分类模型,如何text CNN会更快,或者更好?

    4.调参。

  • 相关阅读:
    多测师讲解python _函数的传递_高级讲师肖sir
    多测师讲解pthon _函数__return_高级讲师肖sir
    多测师讲解python _函数中参数__高级讲师肖sir
    前端 HTML body标签相关内容 常用标签 图片标签 <img/>
    mysql 操作sql语句 操作数据库
    python web框架 MVC MTV
    linux dmesg 查看系统故障信息
    linux uniq 命令
    linux md5sum命令
    Python 字典 items() 方法
  • 原文地址:https://www.cnblogs.com/BlueBlueSea/p/12399185.html
Copyright © 2011-2022 走看看