1064 Complete Binary Search Tree (30)(30 分)
A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than or equal to the node's key.
- Both the left and right subtrees must also be binary search trees.
A Complete Binary Tree (CBT) is a tree that is completely filled, with the possible exception of the bottom level, which is filled from left to right.
Now given a sequence of distinct non-negative integer keys, a unique BST can be constructed if it is required that the tree must also be a CBT. You are supposed to output the level order traversal sequence of this BST.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (<=1000). Then N distinct non-negative integer keys are given in the next line. All the numbers in a line are separated by a space and are no greater than 2000.
Output Specification:
For each test case, print in one line the level order traversal sequence of the corresponding complete binary search tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.
Sample Input:
10
1 2 3 4 5 6 7 8 9 0
Sample Output:
6 3 8 1 5 7 9 0 2 4
题目大意:给出一组数,是一颗完全二叉树并且是二叉搜索树,输出层次遍历序列。
//看到题目感觉很懵,完全没有做过这样的题。
代码来自:https://www.nowcoder.com/questionTerminal/ab6b7429f9c34880837cf4830b2434df
#include<cstdio> #include<algorithm> using namespace std; int node[1010],tree[1010]; int N,pos; void creatTree(int root){//就相当于顺序着把根安排在了tree上。 //递归安排上了之后自然就是层次存储。 if(root>N) return; int lchild=root*2,rchild=root*2+1; creatTree(lchild); tree[root]=node[pos++]; creatTree(rchild); } bool cmp(int a,int b){ return a<b; } int main(){ scanf("%d",&N); for(int i=0;i<N;i++){ scanf("%d",&node[i]); } sort(node,node+N,cmp);//既然是二叉搜索树,那么排序完了之后自然就是中序遍历。 pos=0; creatTree(1); for(int i=1;i<=N;i++){//注意下标是从1开始计算的。 printf("%d",tree[i]); if(i<N){ printf(" "); } } }
1.根据完全二叉树在数组中的存储特点,下标的特点。左子树是root*2,右子树是root*2+1.
2.使用pos来记录下标,因为是中序,所以是中序遍历存完全二叉树。
3.使用二叉搜索树的性质,中序遍历即从小到大。