zoukankan      html  css  js  c++  java
  • 线段树 Mayor's posters

    甚至DFS也能过吧

    Mayor's posters POJ - 2528 

    The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral posters at all places at their whim. The city council has finally decided to build an electoral wall for placing the posters and introduce the following rules: 
    • Every candidate can place exactly one poster on the wall. 
    • All posters are of the same height equal to the height of the wall; the width of a poster can be any integer number of bytes (byte is the unit of length in Bytetown). 
    • The wall is divided into segments and the width of each segment is one byte. 
    • Each poster must completely cover a contiguous number of wall segments.

    They have built a wall 10000000 bytes long (such that there is enough place for all candidates). When the electoral campaign was restarted, the candidates were placing their posters on the wall and their posters differed widely in width. Moreover, the candidates started placing their posters on wall segments already occupied by other posters. Everyone in Bytetown was curious whose posters will be visible (entirely or in part) on the last day before elections. 
    Your task is to find the number of visible posters when all the posters are placed given the information about posters' size, their place and order of placement on the electoral wall. 

    Input

    The first line of input contains a number c giving the number of cases that follow. The first line of data for a single case contains number 1 <= n <= 10000. The subsequent n lines describe the posters in the order in which they were placed. The i-th line among the n lines contains two integer numbers l i and ri which are the number of the wall segment occupied by the left end and the right end of the i-th poster, respectively. We know that for each 1 <= i <= n, 1 <= l i <= ri <= 10000000. After the i-th poster is placed, it entirely covers all wall segments numbered l i, l i+1 ,... , ri.

    Output

    For each input data set print the number of visible posters after all the posters are placed. 

    The picture below illustrates the case of the sample input. 

    Sample Input

    1
    5
    1 4
    2 6
    8 10
    3 4
    7 10
    

    Sample Output

    4
    kuangbing专题也放了这道题,确实是比较经典的线段树,但是这个还没2有涉及到修改操作
    sort+lower_bound+unique离散下
    #include <stdio.h>
    #include <algorithm>
    using  namespace std;
    const int N=100100;
    int b[N<<1],a[N<<1][2],bj[N<<1],M,H,bn;
    int T[N*6];
    void built(int n) {
        H=0;
        for(int i=1; i<n+2; i<<=1)H++;
        M=1<<H;
        for(int i=0; i<=M<<1; i++) T[i]=0;
        for(int i=1; i<=n; i++)bj[i]=0;
    }
    void update(int l,int r,int val) {
        for(l=l+M-1,r=r+M+1;l^r^1;l>>=1,r>>=1) {
            if(~l&1)T[l^1]=val;
            if(r&1)T[r^1]=val;
        }
    }
    void query(int pos) {
        int ans=0;
        for(int i=pos+M; i>0; i>>=1)
            ans=max(ans,T[i]);
        bj[ans]=1;
    }
    int main() {
        int t,n;
        scanf("%d",&t);
        while(t--) {
            bn=0;
            scanf("%d",&n);
            for(int i=1; i<=n; i++) {
                scanf("%d%d",&a[i][0],&a[i][1]);
                b[++bn]=a[i][0];
                b[++bn]=a[i][1];
            }
            sort(b+1,b+bn+1);
            bn=unique(b+1,b+bn+1)-b-1;
            built(bn);
            for(int i=1; i<=n; i++) {
                int l=lower_bound(b+1,b+bn+1,a[i][0])-b;
                int r=lower_bound(b+1,b+bn+1,a[i][1])-b;
                update(l,r,i);
            }
            int ans=0;
            for(int i=1; i<=bn; i++) query(i);
            for(int i=1; i<=bn; i++) if(bj[i])ans++;
            printf("%d
    ",ans);
        }
        return 0;
    }
    大佬您太强了,还请多多指教哎
  • 相关阅读:
    JVM 性能调优实战之:使用阿里开源工具 TProfiler 在海量业务代码中精确定位性能代码
    JVM 性能调优实战之:一次系统性能瓶颈的寻找过程
    MongoDB之一介绍(MongoDB与MySQL的区别、BSON与JSON的区别)
    spring之:XmlWebApplicationContext作为Spring Web应用的IoC容器,实例化和加载Bean的过程
    SpringBoot自动化配置之四:SpringBoot 之Starter(自动配置)、Command-line runners
    分析诊断工具之一:MYSQL性能查看(多指标)
    Condition-线程通信更高效的方式
    微服务监控之一:Metrics让微服务运行更透明
    游戏后台服务技术选型
    TCP之四:TCP 滑动窗口协议 详解
  • 原文地址:https://www.cnblogs.com/BobHuang/p/7228406.html
Copyright © 2011-2022 走看看