zoukankan      html  css  js  c++  java
  • 2017 Multi-University Training Contest

    Regular polygon

    Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 177    Accepted Submission(s): 74


    Problem Description
    On a two-dimensional plane, give you n integer points. Your task is to figure out how many different regular polygon these points can make.
     
    Input
    The input file consists of several test cases. Each case the first line is a numbers N (N <= 500). The next N lines ,each line contain two number Xi and Yi(-100 <= xi,yi <= 100), means the points’ position.(the data assures no two points share the same position.)
     
    Output
    For each case, output a number means how many different regular polygon these points can make.
     
    Sample Input
    4 0 0 0 1 1 0 1 1 6 0 0 0 1 1 0 1 1 2 0 2 1
     
    Sample Output
    1 2
     
    Source
     
    最弱的一题,不过这个正多边形必然是正方形有点骚,不好想啊
    #include <bits/stdc++.h>
    using namespace std;
    int main() {
        int x[505],y[505];
        int n;
        while(cin>>n) {
            set<pair<int,int> >S;
            for(int i=0; i<n; i++) {
                cin>>x[i]>>y[i];
                S.insert(make_pair(x[i],y[i]));
            }
            int cnt=0;
            for(int i=0; i<n; i++)
                for(int j=0; j<i; j++) {
                    int mx=x[i]+x[j],dx=max(x[i],x[j])-min(x[i],x[j]);
                    int my=y[i]+y[j],dy=max(y[i],y[j])-min(y[i],y[j]);
                    if ((mx+dy)&1||(my+dx)&1) continue;
                    int sg=((x[i]-x[j])*(y[i]-y[j])<0)?1:-1;
                    if (S.count(make_pair((mx+dy)/2,(my+sg*dx)/2))&&S.count(make_pair((mx-dy)/2,(my-sg*dx)/2)))
                        cnt++;
    
                }
            cout<<cnt/2<<endl;
        }
        return 0;
    }
     
    大佬您太强了,还请多多指教哎
  • 相关阅读:
    JasperReport笔记
    关于iReport5.6.0无法正常启动或者闪退或者JDK8不兼容的解决方案
    sublime text3 3176激活
    直播技术之编码和封装
    直播技术之推流和传输
    Quic协议剖析
    Glide Picasso和Fresco的对比
    MVP架构学习
    反向打印链表
    重建二叉树
  • 原文地址:https://www.cnblogs.com/BobHuang/p/7246539.html
Copyright © 2011-2022 走看看