zoukankan      html  css  js  c++  java
  • Hello 2018

    这场还是tourist出题,我当时大晚上做完1题滚粗了

    A. Modular Exponentiation
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    The following problem is well-known: given integers n and m, calculate

    ,

    where 2n = 2·2·...·2 (n factors), and  denotes the remainder of division of x by y.

    You are asked to solve the "reverse" problem. Given integers n and m, calculate

    .
    Input

    The first line contains a single integer n (1 ≤ n ≤ 10^8).

    The second line contains a single integer m (1 ≤ m ≤ 10^8).

    Output

    Output a single integer — the value of .

    Examples
    input
    Copy
    4
    42
    output
    10
    input
    Copy
    1
    58
    output
    0
    input
    Copy
    98765432
    23456789
    output
    23456789
    Note

    In the first example, the remainder of division of 42 by 24 = 16 is equal to 10.

    In the second example, 58 is divisible by 21 = 2 without remainder, and the answer is 0.

     A签到,但是也和数学有关啊

    由于n m都很大,n小的话就是直接m%(2^n),n大的时候,需要余的数也很大了,大于m了,直接就是m了

    #include<bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    int main()
    {
        ll n,m;
        cin>>n>>m;
        if(n>60)
            cout<<m<<"
    ";
        else cout<<m%(1LL<<n)<<endl;
        return 0;
    }
    B. Christmas Spruce
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Consider a rooted tree. A rooted tree has one special vertex called the root. All edges are directed from the root. Vertex u is called a child of vertex v and vertex v is called a parent of vertex u if there exists a directed edge from v to u. A vertex is called a leaf if it doesn't have children and has a parent.

    Let's call a rooted tree a spruce if its every non-leaf vertex has at least 3 leaf children. You are given a rooted tree, check whether it's a spruce.

    The definition of a rooted tree can be found here.

    Input

    The first line contains one integer n — the number of vertices in the tree (3 ≤ n ≤ 1 000). Each of the next n - 1 lines contains one integer pi (1 ≤ i ≤ n - 1) — the index of the parent of the i + 1-th vertex (1 ≤ pi ≤ i).

    Vertex 1 is the root. It's guaranteed that the root has at least 2 children.

    Output

    Print "Yes" if the tree is a spruce and "No" otherwise.

    Examples
    input
    Copy
    4
    1
    1
    1
    output
    Yes
    input
    Copy
    7
    1
    1
    1
    2
    2
    2
    output
    No
    input
    Copy
    8
    1
    1
    1
    1
    3
    3
    3
    output
    Yes
    Note

    The first example:

    The second example:

    It is not a spruce, because the non-leaf vertex 1 has only 2 leaf children.

    The third example:

    一个节点下面必须k叉的,直接统计就好了,但是has at least 3 leaf children,所以需要<=3,我没考虑这个啊

    #include<bits/stdc++.h>
    using namespace std;
    const int N=100005;
    int n,fa[N],use[N],f;
    int main()
    {
        scanf("%d",&n);
        for(int i=2; i<=n; i++)
            scanf("%d",&fa[i]),use[fa[i]]=1;
        for(int i=n; i>=1; i--)
            if(!use[i])use[fa[i]]++;
        for(int i=1; i<=n; i++)
            if(use[i]>0&&use[i]<4)f=1;
        if(!f)puts("Yes");
        else puts("No");
        return 0;
    }

    我直接dfs也要区分节点啊,所以+1好了,就和上面的一样正确了

    #include<bits/stdc++.h>
    using namespace std;
    const int N=1005;
    vector<int>V[N];
    int F[N];
    void dfs(int x)
    {
         for(auto X:V[x])
         {
              if(V[X].size())dfs(X);
              else F[x]++;
         }
         F[x]++;
    }
    int main()
    {
        int n,f=1;
        scanf("%d",&n);
        for(int u=2,v;u<=n;u++)
            scanf("%d",&v),V[v].push_back(u);
        dfs(1);
        for(int i=1;i<=n&&f;i++)
        if(F[i]&&F[i]<4)f=0;
        printf("%s",f?"YES":"NO");
        return 0;
    }
    C. Party Lemonade
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    A New Year party is not a New Year party without lemonade! As usual, you are expecting a lot of guests, and buying lemonade has already become a pleasant necessity.

    Your favorite store sells lemonade in bottles of n different volumes at different costs. A single bottle of type i has volume 2i - 1 liters and costs ci roubles. The number of bottles of each type in the store can be considered infinite.

    You want to buy at least L liters of lemonade. How many roubles do you have to spend?

    Input

    The first line contains two integers n and L (1 ≤ n ≤ 30; 1 ≤ L ≤ 109) — the number of types of bottles in the store and the required amount of lemonade in liters, respectively.

    The second line contains n integers c1, c2, ..., cn (1 ≤ ci ≤ 109) — the costs of bottles of different types.

    Output

    Output a single integer — the smallest number of roubles you have to pay in order to buy at least L liters of lemonade.

    Examples
    input
    Copy
    4 12
    20 30 70 90
    output
    150
    input
    Copy
    4 3
    10000 1000 100 10
    output
    10
    input
    Copy
    4 3
    10 100 1000 10000
    output
    30
    input
    Copy
    5 787787787
    123456789 234567890 345678901 456789012 987654321
    output
    44981600785557577
    Note

    In the first example you should buy one 8-liter bottle for 90 roubles and two 2-liter bottles for 30 roubles each. In total you'll get 12 liters of lemonade for just 150 roubles.

    In the second example, even though you need only 3 liters, it's cheaper to buy a single 8-liter bottle for 10 roubles.

    In the third example it's best to buy three 1-liter bottles for 10 roubles each, getting three liters for 30 roubles.

    模拟题,看样例猜题意看题目一条龙

    #include <iostream>
    using namespace std;
    long long n,l,d,a[35],i,c,s=1e18;
    int main()
    {
        cin>>n>>l>>a[0];
        for(int i=1; i<n; i++)
            cin>>a[i],a[i]=min(a[i-1]*2,a[i]);
        for(int i=n-1; i>=0; i--)
        {
            d=(1<<i);
            c+=a[i]*(l/d);
            l%=d;
            s=min(s,c+(l!=0)*a[i]);
        }
        cout<<s;
    }
    D. Too Easy Problems
    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    You are preparing for an exam on scheduling theory. The exam will last for exactly T milliseconds and will consist of n problems. You can either solve problem i in exactly ti milliseconds or ignore it and spend no time. You don't need time to rest after solving a problem, either.

    Unfortunately, your teacher considers some of the problems too easy for you. Thus, he assigned an integer ai to every problem i meaning that the problem i can bring you a point to the final score only in case you have solved no more than ai problems overall (including problem i).

    Formally, suppose you solve problems p1, p2, ..., pk during the exam. Then, your final score s will be equal to the number of values of jbetween 1 and k such that k ≤ apj.

    You have guessed that the real first problem of the exam is already in front of you. Therefore, you want to choose a set of problems to solve during the exam maximizing your final score in advance. Don't forget that the exam is limited in time, and you must have enough time to solve all chosen problems. If there exist different sets of problems leading to the maximum final score, any of them will do.

    Input

    The first line contains two integers n and T (1 ≤ n ≤ 2·105; 1 ≤ T ≤ 109) — the number of problems in the exam and the length of the exam in milliseconds, respectively.

    Each of the next n lines contains two integers ai and ti (1 ≤ ai ≤ n1 ≤ ti ≤ 104). The problems are numbered from 1 to n.

    Output

    In the first line, output a single integer s — your maximum possible final score.

    In the second line, output a single integer k (0 ≤ k ≤ n) — the number of problems you should solve.

    In the third line, output k distinct integers p1, p2, ..., pk (1 ≤ pi ≤ n) — the indexes of problems you should solve, in any order.

    If there are several optimal sets of problems, you may output any of them.

    Examples
    input
    Copy
    5 300
    3 100
    4 150
    4 80
    2 90
    2 300
    output
    2
    3
    3 1 4
    input
    Copy
    2 100
    1 787
    2 788
    output
    0
    0

    input
    Copy
    2 100
    2 42
    2 58
    output
    2
    2
    1 2
    Note

    In the first example, you should solve problems 3, 1, and 4. In this case you'll spend 80 + 100 + 90 = 270 milliseconds, falling within the length of the exam, 300 milliseconds (and even leaving yourself 30 milliseconds to have a rest). Problems 3 and 1 will bring you a point each, while problem 4 won't. You'll score two points.

    In the second example, the length of the exam is catastrophically not enough to solve even a single problem.

    In the third example, you have just enough time to solve both problems in 42 + 58 = 100 milliseconds and hand your solutions to the teacher with a smile.

     特判题

    我选择二分

    #include<bits/stdc++.h>
    using namespace std;
    const int N=2e5+5;
    int T,n,l,r,tot,t;
    struct TT
    {
        int x,y,t;
    } a[N];
    int cmp(TT a,TT b)
    {
        return a.x<b.x;
    }
    int main()
    {
        scanf("%d%d",&n,&T);
        for(int i=1; i<=n; i++)scanf("%d%d",&a[i].y,&a[i].x),a[i].t=i;
        sort(a+1,a+n+1,cmp);
        int l=0,r=n;
        while(l<r)
        {
            int mi=l+r+1>>1;
            tot=t=0;
            for(int i=1; i<=n; i++)
                if(a[i].y>=mi)
                {
                    if(tot+a[i].x>T)break;
                    else tot+=a[i].x,t++;
                }
            if(t>=mi)l=mi;
            else r=mi-1;
        }
        t=0;
        printf("%d
    %d
    ",l,l);
        for(int i=1; i<=n&&t<l; i++)
            if(a[i].y>=l)
                printf("%d ",a[i].t),t++;
        return 0;
    }
  • 相关阅读:
    OL8.0静默安装Oracle 19C
    MYSQL GTID 复制
    MYSQL异步复制
    YUM方式安装MYSQL5.7
    【学习笔记】大数据技术原理与应用(MOOC视频、厦门大学林子雨)
    【网友的】《一个程序猿的生命周期》读后感
    连载《一个程序猿的生命周期》-22.缺了一条腿的公司
    续评《遇到一位ITer,一位出租车司机,必看》
    遇到一位ITer,一位出租车司机,必看。
    连载《一个程序猿的生命周期》-21.而立之年,第一次跳槽,寻求转型
  • 原文地址:https://www.cnblogs.com/BobHuang/p/8481511.html
Copyright © 2011-2022 走看看