zoukankan      html  css  js  c++  java
  • HDU5862 Counting Intersections

    Given some segments which are paralleled to the coordinate axis. You need to count the number of their intersection. 

    The input data guarantee that no two segments share the same endpoint, no covered segments, and no segments with length 0. 

    InputThe first line contains an integer T, indicates the number of test case. 

    The first line of each test case contains a number n(1<=n<=100000), the number of segments. Next n lines, each with for integers, x1, y1, x2, y2, means the two endpoints of a segment. The absolute value of the coordinate is no larger than 1e9. 
    OutputFor each test case, output one line, the number of intersection.Sample Input

    2
    4
    1 0 1 3
    2 0 2 3
    0 1 3 1
    0 2 3 2
    4
    0 0 2 0
    3 0 3 2
    3 3 1 3
    0 3 0 2

    Sample Output

    4
    0

    求当前线段与坐标轴平行的直线的交点

    可以用扫描线的,扫描线or离散化都是一种很神奇的存在方式

    #include<bits/stdc++.h>
    using namespace std;
    const int N=2e5+5;
    struct Node
    {
        int f,x,y,y1;
        bool operator <(const Node &R)const
        {
            return (x==R.x?f<R.f:x<R.x);
        }
    } a[N];
    int Maxn;
    int yy[N],c[N];
    void add(int x,int n)
    {
        for(int i=x; i<=Maxn; i+=i&-i)c[i]+=n;
    }
    int sum(int x)
    {
        int ans=0;
        for(int i=x; i>0; i-=i&-i)ans+=c[i];
        return ans;
    }
    unordered_map<int,int>M;
    int main()
    {
        int t;
        scanf("%d",&t);
        while(t--)
        {
            M.clear(),memset(c,0,sizeof c);
            int n,ctot=0,tot=0;
            scanf("%d",&n);
            for(int i=0,x1,x2,y1,y2; i<n; i++)
            {
                scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
                if(x1==x2)
                {
                    if(y1>y2)swap(y1,y2);
                    a[++ctot]= {1,x1,y1,y2};
                    yy[++tot]=y1;
                    yy[++tot]=y2;
                }
                else
                {
                    if(x1>x2)swap(x1,x2);
                    a[++ctot]= {0,x1,y1,1};
                    a[++ctot]= {0,x2+1,y2,-1};
                    yy[++tot]=y1;
                }
            }
            sort(yy+1,yy+tot+1);
            Maxn=0;
            for(int i=1; i<=tot; i++)if(!M[yy[i]])M[yy[i]]=++Maxn;
            sort(a+1,a+ctot+1);
            long long ans=0;
            for(int i=1; i<=ctot; i++)
            {
                if(a[i].f)ans+=(sum(M[a[i].y1])-sum(M[a[i].y]-1));
                else add(M[a[i].y],a[i].y1);
            }
            printf("%lld
    ",ans);
        }
        return 0;
    }
  • 相关阅读:
    如何防止源码被盗
    C# WebBrowser 获得选中部分的html源码
    特殊字符和空格
    MySQL性能优化
    mysql5.7新特性探究
    【九】MongoDB管理之安全性
    【八】MongoDB管理之分片集群实践
    【七】MongoDB管理之分片集群介绍
    【六】MongoDB管理之副本集
    【五】MongoDB管理之生产环境说明
  • 原文地址:https://www.cnblogs.com/BobHuang/p/9804172.html
Copyright © 2011-2022 走看看