zoukankan      html  css  js  c++  java
  • bzoj2431: [HAOI2009]逆序对数列

    2431: [HAOI2009]逆序对数列

    Description

    对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数。若对于任意一个由1~n自然数组成的
    数列,可以很容易求出有多少个逆序对数。那么逆序对数为k的这样自然数数列到底有多少个?

    Input

    第一行为两个整数n,k。

    Output

    写入一个整数,表示符合条件的数列个数,由于这个数可能很大,你只需输出该数对10000求余数后的结果。

    Sample Input

    4 1

    Sample Output

    3

    样例说明:
    下列3个数列逆序对数都为1;分别是1 2 4 3 ;1 3 2 4 ;2 1 3 4;
    100%的数据 n<=1000,k<=1000

    题解:(dp递推+优化)

    稍微认真思考一下:

      假设给你若干个位置,如果把n个数从小到大一个个放进去(可以插入到放好的位置当中),对于当前放入的第i个数来说,它一定比前i-1个数都要大,所以当它在前i-1个位置中选择时,对于选择的任意一个位置都是有后效性的。

      定义f[i][j]表示用第i个数填(前i-1个位置)了之后,产生j对逆序对的方案数; 

      那么这时候我们发现,前i-1个数的方案数我们已经得出了,那么对于当前所要求的j对逆序对,我们可以直接从前面继承。每个数i要填时,后效性最少为0(填在最后),最大为i-1(最前面)。为0时我们就可以从f[i-1][j]继承,那么不难发现其他位置比如说填在第i-2个数的后面,就从f[i-1][j-1]继承。

      所以方程:f[i][j]=f[i][j]=∑f[i-1][j-k](0<=k<i)

      其实这样直接做会超时ORZ

      用个前缀和优化一下就好啦,时间复杂度降为O(n^2)...


    #include<cstdio>
    #include<cstring>
    #include<cstdlib>
    #include<cmath>
    #include<algorithm>
    #define mod 10000
    using namespace std;
    inline int read()
    {
        int f=1,x=0;char ch;
        while(ch<'0' || ch>'9'){if(ch=='-')f=-1;ch=getchar();}
        while(ch>='0' && ch<='9'){x=x*10+ch-'0';ch=getchar();}
        return f*x;
    }
    int n,k;
    int f[1100][1100];//表示用第i个数填(前i-1个位置)了之后,产生j对逆序对的方案数; 
    int main()
    {
        n=read();k=read();
        memset(f,0,sizeof(f));
        
        f[0][0]=1;
        for(int i=1;i<=n;i++)f[i][0]=1;//产生0个逆序对的方案数仅有一种:上升序列
        
        int sum=0;
        for(int i=1;i<=n;i++)
        {
            sum=f[i-1][0];
            for(int j=1;j<=k;j++)
            {
                if(j-i>=0)sum-=f[i-1][j-i];
                sum+=f[i-1][j];
                f[i][j]+=sum;
                f[i][j]+=mod;
                if(f[i][j]>=mod)f[i][j]%=mod;
            }
        }
        
        printf("%d
    ",f[n][k]);//输出填完n个数之后产生k个逆序对的方案数 
        return 0;
    }
  • 相关阅读:
    线程间的通信
    不用加减乘除做加法
    关键字throw(something)限制
    C++ 中的“ !” 运算
    n个骰子的点数
    State 模式
    Strategy 模式
    构造函数为什么不能是虚函数 ( 转载自C/C++程序员之家)
    n个骰子的点数
    和为S的两个数字
  • 原文地址:https://www.cnblogs.com/CHerish_OI/p/7878819.html
Copyright © 2011-2022 走看看