zoukankan      html  css  js  c++  java
  • Codeforces 567F Mausoleum dp

    Mausoleum

    考虑将数字从大到小一种一种填进去, 新加入的数字只会在之前组成序列的两侧, 所以形状一直是连续的一段。

    dp[ k ][ i ][ j ] 表示填入了前 k 大的数字, 它们位于i - j 的合法方案数, 转移的时候check一下能否转移。

    #include<bits/stdc++.h>
    #define LL long long
    #define LD long double
    #define ull unsigned long long
    #define fi first
    #define se second
    #define mk make_pair
    #define PLL pair<LL, LL>
    #define PLI pair<LL, int>
    #define PII pair<int, int>
    #define SZ(x) ((int)x.size())
    #define ALL(x) (x).begin(), (x).end()
    #define fio ios::sync_with_stdio(false); cin.tie(0);
    
    using namespace std;
    
    const int N = 700 + 7;
    const int inf = 0x3f3f3f3f;
    const LL INF = 0x3f3f3f3f3f3f3f3f;
    const int mod = 1e9 + 7;
    const double eps = 1e-8;
    const double PI = acos(-1);
    
    template<class T, class S> inline void add(T& a, S b) {a += b; if(a >= mod) a -= mod;}
    template<class T, class S> inline void sub(T& a, S b) {a -= b; if(a < 0) a += mod;}
    template<class T, class S> inline bool chkmax(T& a, S b) {return a < b ? a = b, true : false;}
    template<class T, class S> inline bool chkmin(T& a, S b) {return a > b ? a = b, true : false;}
    
    int n, k;
    
    LL dp[36][71][71];
    
    int lh[101], rh[101], op[101];
    char s[10];
    
    bool check(int l, int r, int p1, int p2) {
        for(int i = 1; i <= k; i++) {
            if(lh[i] == rh[i]) continue;
            if(lh[i] == p1 && rh[i] == p2) {
                if(op[i] == 1 || op[i] == 2) return false;
            } else if(lh[i] == p1 || lh[i] == p2) {
                if(l <= rh[i] && rh[i] <= r) {
                    if(op[i] != 1 && op[i] != 3) return false;
                } else {
                    if(op[i] != 2 && op[i] != 4) return false;
                }
            } else if(rh[i] == p2 || rh[i] == p1) {
                if(l <= lh[i] && lh[i] <= r) {
                    if(op[i] != 2 && op[i] != 4) return false;
                } else {
                    if(op[i] != 1 && op[i] != 3) return false;
                }
            }
            else {
                if(rh[i] < l || lh[i] > r) continue;
                if(l <= lh[i] && rh[i] <= r) continue;
                if(lh[i] < l && rh[i] > r) continue;
                if(lh[i] < l) {
                    if(op[i] != 1 && op[i] != 3) return false;
                } else {
                    if(op[i] != 2 && op[i] != 4) return false;
                }
            }
        }
        return true;
    }
    
    int main() {
        scanf("%d%d", &n, &k);
        for(int i = 1; i <= k; i++) {
            scanf("%d%s%d", &lh[i], s, &rh[i]);
            if(strlen(s) == 1) {
                if(s[0] == '=') op[i] = 0;
                else if(s[0] == '<') op[i] = 1;
                else if(s[0] == '>') op[i] = 2;
            } else {
                if(s[0] == '<') op[i] = 3;
                else if(s[0] == '>') op[i] = 4;
            }
            if(lh[i] > rh[i]) {
                if(op[i] == 1) op[i] = 2;
                else if(op[i] == 2) op[i] = 1;
                else if(op[i] == 3) op[i] = 4;
                else if(op[i] == 4) op[i] = 3;
                swap(lh[i], rh[i]);
            }
        }
        for(int i = 1; i < 2 * n; i++) {
            dp[n][i][i + 1] = 1;
            for(int j = 1; j <= k; j++) {
                if(lh[j] == i && rh[j] == i + 1 && (op[j] == 1 || op[j] == 2)) {
                    dp[n][i][i + 1] = 0;
                    break;
                }
            }
        }
        for(int k = n; k > 1; k--) {
            int len = (n - k + 1) * 2;
            for(int i = 1; i + len - 1 <= 2 * n; i++) {
                int j = i + len - 1;
                if(!dp[k][i][j]) continue;
    
                if(i >= 3 && check(i, j, i - 2, i - 1)) {
                    dp[k - 1][i - 2][j] += dp[k][i][j];
                }
    
                if(j <= 2 * n - 2 && check(i, j, j + 1, j + 2)) {
                    dp[k - 1][i][j + 2] += dp[k][i][j];
                }
    
                if(i >= 2 && j <= 2 * n - 1 && check(i, j, i - 1, j + 1)) {
                    dp[k - 1][i - 1][j + 1] += dp[k][i][j];
                }
            }
        }
        printf("%lld
    ", dp[1][1][2 * n]);
        return 0;
    }
    
    /*
    */
  • 相关阅读:
    AntItemInventoryScene道具栏列表显示
    AntItemBaseScene的功能分析
    杀掉一直处于 正在终止 状态的并发请求
    oracle文件版本
    某个系统配置文件 用户层的SQL
    系统配置SQL profile
    (转)oracle 查看表所占用的空间大小
    Workflow Mailer Notifications设置
    System Hold, Fix Manager before resetting counters
    Linux mail 命令参数
  • 原文地址:https://www.cnblogs.com/CJLHY/p/11089190.html
Copyright © 2011-2022 走看看