E - Superior Periodic Subarrays
好难的一题啊。。。
这个博客讲的很好,搬运一下。
https://blog.csdn.net/thy_asdf/article/details/49406133
#include<bits/stdc++.h> #define LL long long #define fi first #define se second #define mk make_pair #define pii pair<int,int> #define piii pair<int, pair<int,int> > using namespace std; const int N = 2e5 + 10; const int M = 10 + 7; const int inf = 0x3f3f3f3f; const LL INF = 0x3f3f3f3f3f3f3f3f; const int mod = 1e9 + 7; const double eps = 1e-6; int gcd(int a, int b) { return !b ? a : gcd(b, a % b); } int n, mx, a[N << 1], cnt[N << 1], f[N << 1]; bool flag[N << 1]; int main() { scanf("%d", &n); for(int i = 0; i < n; i++) { scanf("%d", &a[i]); a[i + n] = a[i]; } LL ans = 0; for(int d = 1; d < n; d++) { //枚举GCD(n,s) if(n % d) continue; memset(flag, false, sizeof(flag)); for(int k = 0; k < d; k++) { //枚举起点 mx = 0; for(int i = k; i < 2 * n; i += d) mx = max(mx, a[i]); //找出这些相隔为d的数之间最大的数 for(int i = k; i < 2 * n; i += d) flag[i] = (a[i] == mx);//判断这个数是不是一系列数的最大值 } f[0] = flag[0]; //以i结尾的"卓越子序列"最长可能长度 for(int i = 1; i < 2 * n; i++) { if(flag[i]) f[i] = f[i - 1] + 1; else f[i] = 0; f[i] = min(f[i], n - 1); } cnt[0] = 0; //1-i中有多少个数与n的gcd为枚举的d for(int i = 1; i < n / d; i++) cnt[i] = cnt[i - 1] + (gcd(i, n / d) == 1); //要把Gcd(s,n)==d化简成gcd(s/d,n/d)==1,不然会被卡 for(int i = n; i < n * 2; i++) ans += cnt[f[i] / d]; } printf("%lld ", ans); return 0; } /* */