思路:有一个公式 如果 x = a1 ^ b1 * a2 ^ b2 * ...... * an ^ bn 其中ai为质数,那么总共的因子个数为 (b1 + 1) * (b2 + 1) *....* (bn + 1),
可得最多只和前16个质数有关,那么我们dfs暴力枚举每个质数的指数个数,注意因为值很大,所以比较过程用了log,后面上个大数输出。
import java.math.BigInteger; import java.util.*; public class Main { static int n; static int prime[] = {0,2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53}; static int ret[] = new int[17]; static int tmp[] = new int[17]; static double lg[] = new double[17]; static double mn = 100000000000000000.0; public static void main(String[] args) { Scanner in = new Scanner(System.in); n = in.nextInt(); for(int i = 1; i <= 16; i++) { lg[i] = Math.log(prime[i]); } dfs(0.0, n, 1, 1000000); BigInteger ans = BigInteger.valueOf(1); for(int i = 1; i <= 16; i++) { for(int j = 1; j <= ret[i]; j++) { ans = ans.multiply(BigInteger.valueOf(prime[i])); } } System.out.println(ans); in.close(); } static void dfs(double x, int y, int z, int pre) { if(x >= mn) return; if(y == 1) { mn = x; for(int i = 1; i <= 16; i++) { ret[i] = 0; if(i <= z - 1) { ret[i] = tmp[i]; } } return; } if(z > 16) return; for(int i = 0; (i + 1) * (i + 1) <= y; i++) { if(y % (i + 1) == 0) { if(i != 0 && i <= pre) { tmp[z] = i; dfs(x + lg[z] * i, y / (i + 1), z + 1, i); } if((i + 1) * (i + 1) != y && y / (i + 1) - 1 <= pre) { tmp[z] = y / (i + 1) - 1; dfs(x + lg[z] * (y / (i + 1) - 1), i + 1, z + 1, y /(i + 1) - 1); } } } } }