zoukankan      html  css  js  c++  java
  • bzoj 2326 矩阵快速幂

    思路:矩阵快速幂搞一搞。

    #include<bits/stdc++.h>
    #define LL long long
    #define fi first
    #define se second
    #define mk make_pair
    #define PII pair<int, int>
    #define PLI pair<LL, int>
    #define ull unsigned long long
    using namespace std;
    
    const int N = 3e5 + 7;
    const int inf = 0x3f3f3f3f;
    const LL INF = 0x3f3f3f3f3f3f3f3f;
    const int Mod = 1e9 + 7;
    
    LL n;
    int mod;
    
    struct Matrix {
        int a[3][3];
        Matrix() {
            memset(a, 0, sizeof(a));
        }
        void init() {
            for(int i = 0; i < 3; i++)
                a[i][i] = 1;
        }
        Matrix operator * (const Matrix &B) const {
            Matrix C;
            for(int i = 0; i < 3; i++)
                for(int j = 0; j < 3; j++)
                    for(int k = 0; k < 3; k++)
                        C.a[i][j] = (C.a[i][j] + 1ll * a[i][k] * B.a[k][j]) % mod;
            return C;
        }
        Matrix operator ^ (LL b) {
            Matrix C; C.init();
            Matrix A = (*this);
            while(b) {
                if(b & 1) C = C * A;
                A = A * A; b >>= 1;
            }
            return C;
        }
    } M;
    
    int main() {
        int Mat[3][3] = {
            {1, 1, 0},
            {0, 1, 1},
            {0, 0, 1}
        };
        for(int i = 0; i < 3; i++)
            for(int j = 0; j < 3; j++)
                M.a[i][j] = Mat[i][j];
    
        scanf("%lld%d", &n, &mod);
    
        Matrix A; A.init();
        bool flag = true;
        for(LL i = 1000000000000000000; i; i /= 10) {
            LL p = 0;
            if(n >= i) {
                if(flag) p = n - i + 1;
                else p = i * 10 - i;
                flag = false;
            }
            M.a[0][0] = i % mod * 10 % mod;
            A = A * (M ^ p);
        }
        printf("%d
    ", (A.a[0][1] + A.a[0][2]) % mod);
        return 0;
    }
    
    /*
    */
  • 相关阅读:
    luogu 1865 数论 线性素数筛法
    洛谷 2921 记忆化搜索 tarjan 基环外向树
    洛谷 1052 dp 状态压缩
    洛谷 1156 dp
    洛谷 1063 dp 区间dp
    洛谷 2409 dp 月赛题目
    洛谷1199 简单博弈 贪心
    洛谷1417 烹调方案 dp 贪心
    洛谷1387 二维dp 不是特别简略的题解 智商题
    2016 10 28考试 dp 乱搞 树状数组
  • 原文地址:https://www.cnblogs.com/CJLHY/p/9720300.html
Copyright © 2011-2022 走看看