zoukankan      html  css  js  c++  java
  • bzoj 1879 容斥

    暴力求容斥系数或者直接组合数求容斥系数都可以。

    #include<bits/stdc++.h>
    #define LL long long
    #define fi first
    #define se second
    #define mk make_pair
    #define PII pair<int, int>
    #define PLI pair<LL, int>
    #define ull unsigned long long
    using namespace std;
    
    const int N = 55;
    const int inf = 0x3f3f3f3f;
    const LL INF = 0x3f3f3f3f3f3f3f3f;
    const int mod = 1000003;
    
    int n, k, m, Pow[N], num[1 << 15], C[N][N];
    char s[20][55];
    char t[55];
    
    void init() {
        Pow[0] = 1;
        for(int i = 1; i < N; i++) Pow[i] = Pow[i-1] * 26 % mod;
        for(int i = 0; i < N; i++) {
            for(int j = 0; j <= i; j++) {
                if(!j || i == j) C[i][j] = 1;
                else C[i][j] = (C[i-1][j] + C[i-1][j-1]) % mod;
            }
        }
    }
    
    int cal(int state) {
        memset(t, '#', sizeof(t));
        for(int j = 0; j < n; j++) {
            if((state>>j)&1) {
                for(int i = 0; i < m; i++) {
                    if(s[j][i] != '?') {
                        if(t[i] == '#') t[i] = s[j][i];
                        else if(t[i] != s[j][i]) return 0;
                    }
                }
            }
        }
        int cnt = 0;
        for(int i = 0; i < m; i++)
            if(t[i] == '#') cnt++;
        return Pow[cnt];
    }
    
    int solve(int k) {
        if(k == -1) return 0;
        int ans = 0;
        for(int s = 1; s < (1<<n); s++) {
            if(s) num[s] = num[s-(s&-s)] + 1;
            if(num[s] > k) {
                int val = cal(s);
                if((num[s] - k)&1) ans = (ans + 1ll*C[num[s]-1][k]*val) % mod;
                else ans = (ans - 1ll*C[num[s]-1][k]*val) % mod;
            }
        }
        return (Pow[m] - ans + mod) % mod;
    }
    
    int main() {
        init();
        int T; scanf("%d", &T);
        while(T--) {
            scanf("%d%d", &n, &k);
            for(int i = 0; i < n; i++)
                scanf("%s", s[i]);
            m = strlen(s[0]);
            printf("%d
    ", (solve(k) - solve(k-1) + mod) % mod);
        }
        return 0;
    }
    
    /*
    */
  • 相关阅读:
    IEnumerable<T>转DataTable的几种方法
    关于IAsyncResult接口的CompletedSynchronously属性
    为WCF增加UDP绑定(储备篇)
    WPF自定义集合控件概述与遇到的问题
    WPF嵌套模板引发的血案
    为WCF增加UDP绑定(实践篇)
    Uva 10557 XYZZY(DFS+BFS)
    Uva 572 Oil Deposits(DFS)
    Uva 532 Dungeon Master(三维迷宫)
    Uva 10004 Bicoloring
  • 原文地址:https://www.cnblogs.com/CJLHY/p/9750485.html
Copyright © 2011-2022 走看看