康托展开的公式
把一个整数X展开成如下形式:
X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[2]*1!+a[1]*0!
其中,a为整数,并且0<=a[i]<i(1<=i<=n)
康托展开的应用实例
{1,2,3,4,...,n}表示1,2,3,...,n的排列如 {1,2,3} 按从小到大排列一共6个。123 132 213 231 312 321 。
代表的数字 1 2 3 4 5 6 也就是把10进制数与一个排列对应起来。
他们间的对应关系可由康托展开来找到。
如我想知道321是{1,2,3}中第几个大的数可以这样考虑 :
第一位是3,当第一位的数小于3时,那排列数小于321 如 123、 213 ,小于3的数有1、2 。所以有2*2!个。再看小于第二位2的:小于2的数只有一个就是1 ,所以有1*1!=1 所以小于321的{1,2,3}排列数有2*2!+1*1!=5个。所以321是第6个大的数。 2*2!+1*1!+0*0!就是康托展开。
再举个例子:1324是{1,2,3,4}排列数中第几个大的数:第一位是1小于1的数没有,是0个 0*3! 第二位是3小于3的数有1和2,但1已经在第一位了,所以只有一个数2 1*2! 。第三位是2小于2的数是1,但1在第一位,所以有0个数 0*1! ,所以比1324小的排列有0*3!+1*2!+0*1!=2个,1324是第三个大数。
1 #include <iostream> 2 #include <string> 3 4 using namespace std; 5 6 int main() 7 { 8 string s; 9 10 cin>>s; 11 int len=s.length(); 12 13 int sum=0; 14 for(int i=0;i<len;i++) 15 { 16 int a=0; 17 int b=1; 18 for(int j=i+1;j<len;j++) 19 if(s[j]<s[i]) 20 { 21 a=a+1; 22 } 23 //sum+=a*(8-i)! 24 for(int k=1;k<len-i;k++) 25 { 26 b*=k; 27 } 28 29 sum+=a*b; 30 } 31 32 cout<<sum<<endl; 33 34 return 0; 35 }