zoukankan      html  css  js  c++  java
  • POJ 1273 Drainage Ditches



    Drainage Ditches
    Time Limit: 1000MSMemory Limit: 10000K
    Total Submissions: 49739Accepted: 18863

    Description

    Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a set of drainage ditches so that Bessie's clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch. 
    Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network. 
    Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle. 

    Input

    The input includes several cases. For each case, the first line contains two space-separated integers, N (0 <= N <= 200) and M (2 <= M <= 200). N is the number of ditches that Farmer John has dug. M is the number of intersections points for those ditches. Intersection 1 is the pond. Intersection point M is the stream. Each of the following N lines contains three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the intersections between which this ditch flows. Water will flow through this ditch from Si to Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which water will flow through the ditch.

    Output

    For each case, output a single integer, the maximum rate at which water may emptied from the pond.

    Sample Input

    5 4
    1 2 40
    1 4 20
    2 4 20
    2 3 30
    3 4 10

    Sample Output

    50

    Source

    USACO 93 

    最大流Dinic算法模板:
    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <queue>

    using namespace std;

    const int INF=0x3f3f3f3f;
    const int MaxV=500,MaxE=10000;

    struct Edge
    {
        int to,next,c;
    };

    Edge E[MaxE+10];
    int Adj[MaxV+10],Size;

    void Init()
    {
        Size=0;
        memset(Adj,-1,sizeof(Adj));
    }

    void Add_Edge(int u,int v,int w)
    {
        E[Size].to=v;
        E[Size].next=Adj;
        E[Size].c=w;
        Adj=Size++;
        E[Size].to=u;
        E[Size].next=Adj[v];
        E[Size].c=0;
        Adj[v]=Size++;
    }

    bool vis[MaxV+10];   int dist[MaxV+10];
    int src,sink;

    void bfs()
    {
        memset(dist,0,sizeof(dist));
        queue<int> q;
        q.push(src);vis[src]=true;
        while(!q.empty())
        {
            int u=q.front();
            q.pop();
            for(int i=Adj;~i;i=E.next)
            {
                int v=E.to;
                if(E.c&&!vis[v])
                {
                    q.push(v);
                    dist[v]=dist+1;
                    vis[v]=true;
                }
            }
        }
    }

    int dfs(int u,int delta)
    {
        if(u==sink)
        {
            return delta;
        }
        else
        {
            int ret=0;
            for(int i=Adj;~i&&delta;i=E.next)
            {
                int v=E.to;
                if(E.c&&dist[v]==dist+1)
                {
                    int dd=dfs(v,min(delta,E.c));
                    E.c-=dd; E[i^1].c+=dd;
                    delta-=dd; ret+=dd;
                }
            }
            return ret;
        }
    }

    int maxflow()
    {
        int ret=0;
        while(true)
        {
            memset(vis,false,sizeof(vis));
            bfs();
            if(!vis[sink]) return ret;
            ret+=dfs(src,INF);
        }
    }

    int main()
    {
        int n,m;
        while(scanf("%d%d",&n,&m)!=EOF)
        {
            Init();
            for(int i=0;i<n;i++)
            {
                int a,b,c;
                scanf("%d%d%d",&a,&b,&c);
                Add_Edge(a,b,c);
            }
            src=1,sink=m;
            printf("%d ",maxflow());
        }

        return 0;
    }
    * This source code was highlighted by YcdoiT. ( style: Codeblocks )

  • 相关阅读:
    动态更新活动条件
    使用本地服务异步执行自定义活动业务逻辑
    隐藏自定义复合活动的内部实现
    如何开发一个基本的复合活动
    HTML5性能之争 —— 单线程:缺点还是特点?
    CDNJS —— Web 上最快的 JavaScript 资源库
    Comfusion 4.1 发布,桌面 Linux 发行
    FreeBSD 9.1 正式版已经可以下载
    Squid Analyzer 5.0 发布,Squid日志统计
    MemSQL 1.8 发布,号称最快的关系数据库
  • 原文地址:https://www.cnblogs.com/CKboss/p/3350885.html
Copyright © 2011-2022 走看看