zoukankan      html  css  js  c++  java
  • POJ 1273 Drainage Ditches



    Drainage Ditches
    Time Limit: 1000MSMemory Limit: 10000K
    Total Submissions: 49739Accepted: 18863

    Description

    Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a set of drainage ditches so that Bessie's clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch. 
    Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network. 
    Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle. 

    Input

    The input includes several cases. For each case, the first line contains two space-separated integers, N (0 <= N <= 200) and M (2 <= M <= 200). N is the number of ditches that Farmer John has dug. M is the number of intersections points for those ditches. Intersection 1 is the pond. Intersection point M is the stream. Each of the following N lines contains three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the intersections between which this ditch flows. Water will flow through this ditch from Si to Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which water will flow through the ditch.

    Output

    For each case, output a single integer, the maximum rate at which water may emptied from the pond.

    Sample Input

    5 4
    1 2 40
    1 4 20
    2 4 20
    2 3 30
    3 4 10

    Sample Output

    50

    Source

    USACO 93 

    最大流Dinic算法模板:
    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <queue>

    using namespace std;

    const int INF=0x3f3f3f3f;
    const int MaxV=500,MaxE=10000;

    struct Edge
    {
        int to,next,c;
    };

    Edge E[MaxE+10];
    int Adj[MaxV+10],Size;

    void Init()
    {
        Size=0;
        memset(Adj,-1,sizeof(Adj));
    }

    void Add_Edge(int u,int v,int w)
    {
        E[Size].to=v;
        E[Size].next=Adj;
        E[Size].c=w;
        Adj=Size++;
        E[Size].to=u;
        E[Size].next=Adj[v];
        E[Size].c=0;
        Adj[v]=Size++;
    }

    bool vis[MaxV+10];   int dist[MaxV+10];
    int src,sink;

    void bfs()
    {
        memset(dist,0,sizeof(dist));
        queue<int> q;
        q.push(src);vis[src]=true;
        while(!q.empty())
        {
            int u=q.front();
            q.pop();
            for(int i=Adj;~i;i=E.next)
            {
                int v=E.to;
                if(E.c&&!vis[v])
                {
                    q.push(v);
                    dist[v]=dist+1;
                    vis[v]=true;
                }
            }
        }
    }

    int dfs(int u,int delta)
    {
        if(u==sink)
        {
            return delta;
        }
        else
        {
            int ret=0;
            for(int i=Adj;~i&&delta;i=E.next)
            {
                int v=E.to;
                if(E.c&&dist[v]==dist+1)
                {
                    int dd=dfs(v,min(delta,E.c));
                    E.c-=dd; E[i^1].c+=dd;
                    delta-=dd; ret+=dd;
                }
            }
            return ret;
        }
    }

    int maxflow()
    {
        int ret=0;
        while(true)
        {
            memset(vis,false,sizeof(vis));
            bfs();
            if(!vis[sink]) return ret;
            ret+=dfs(src,INF);
        }
    }

    int main()
    {
        int n,m;
        while(scanf("%d%d",&n,&m)!=EOF)
        {
            Init();
            for(int i=0;i<n;i++)
            {
                int a,b,c;
                scanf("%d%d%d",&a,&b,&c);
                Add_Edge(a,b,c);
            }
            src=1,sink=m;
            printf("%d ",maxflow());
        }

        return 0;
    }
    * This source code was highlighted by YcdoiT. ( style: Codeblocks )

  • 相关阅读:
    F2. Same Sum Blocks (Hard) 解析(思維、前綴和、貪心)
    E. Copying Data 解析(線段樹)
    B. Nauuo and Circle 解析(思維、DP)
    POJ3436-ACM Computer Factory(最大流)
    A.牛牛扔牌(双端队列)/B.疯狂过山车(最长上升子序列)/C.牛牛的棋盘(容斥原理)
    CodeForces 665E. Beautiful Subarrays(字典树)(贪心)(异或前缀和)
    CodeForces 455C.Civilization(并查集)(树的直径)
    CodeForces 1021B. Chemical table(并查集)
    CodeForces 961E. Tufurama(主席树)
    CodeForces 1024C. Array Product(模拟)(分类讨论)
  • 原文地址:https://www.cnblogs.com/CKboss/p/3350885.html
Copyright © 2011-2022 走看看