Intervals
3 7 3
8 10 3
6 8 1
1 3 1
10 11 1
链式前向星SPFA+差分约束
* This source code was highlighted by YcdoiT. ( style: Codeblocks )
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 19359 | Accepted: 7308 |
Description
You are given n closed, integer intervals [ai, bi] and n integers c1, ..., cn.
Write a program that:
reads the number of intervals, their end points and integers c1, ..., cn from the standard input,
computes the minimal size of a set Z of integers which has at least ci common elements with interval [ai, bi], for each i=1,2,...,n,
writes the answer to the standard output.
Write a program that:
reads the number of intervals, their end points and integers c1, ..., cn from the standard input,
computes the minimal size of a set Z of integers which has at least ci common elements with interval [ai, bi], for each i=1,2,...,n,
writes the answer to the standard output.
Input
The first line of the input contains an integer n (1 <= n <= 50000) -- the number of intervals. The following n lines describe the intervals. The (i+1)-th line of the input contains three integers ai, bi and ci separated by single spaces and such that 0 <= ai <= bi <= 50000 and 1 <= ci <= bi - ai+1.
Output
The output contains exactly one integer equal to the minimal size of set Z sharing at least ci elements with interval [ai, bi], for each i=1,2,...,n.
Sample Input
53 7 3
8 10 3
6 8 1
1 3 1
10 11 1
Sample Output
6Source
链式前向星SPFA+差分约束
#include <iostream> #include <cstdio> #include <cstring> #include <queue> #include <vector> using namespace std; const int MAXN=550000; const int INF=0x3f3f3f3f; typedef struct { int next,to,w; }Edge; int maxv=-1; Edge E[MAXN]; int Size,Adj[MAXN]; void Init() { Size=0; memset(Adj,-1,sizeof(Adj)); } void Add_Edge(int u,int v,int c) { E[Size].to=v; E[Size].w=c; E[Size].next=Adj Adj } int dist[MAXN]; bool inQue[MAXN]; void SPFA() { queue<int> q; for(int i=0;i<=maxv;i++) { dist inQue } dist[0]=0; inQue[0]=true; q.push(0); while(!q.empty()) { int u=q.front(); q.pop(); for(int i=Adj { if(dist { dist[E if(!inQue[E { inQue[E q.push(E } } } inQue } printf("%d ",dist[maxv]); } int main() { int T; scanf("%d",&T); Init(); while(T--) { int a,b,c; scanf("%d%d%d",&a,&b,&c); if(b+1>maxv) maxv=b+1; Add_Edge(a,b+1,c); } for(int i=0;i<=maxv;i++) { Add_Edge(i+1,i,-1); Add_Edge(i,i+1,0); } SPFA(); return 0; } |