zoukankan      html  css  js  c++  java
  • networkx小练习

    networkx是针对复杂网络研发的库,可以通过在cmd窗口中pip 或者直接在pycharm中通过:File—>Setting-->Project-->Project interpreter 这样的路径可以看到你目前所安装的库,并且点击右上方的“+”,能够在搜索框中搜索你想安装的库,点击下方“install package”就可以安装相关库。本人是在pycharm中安装完成,非常简单快速。

    在运用networkx时会用到numpy库和matplotlib库,可以进行pip安装,在安装matplotlib时最后会自动安装numpy.

    python -m pip install matplotlib, 如果超时报错‘’raise ReadTimeoutError  '':pip install -U --timeout 1000 matplotlib,

    如果报错”these package do not match the hashes.....“:pip install --upgrade matplotlib

    import networkx as nx
    import matplotlib.pyplot as plt
    
    G = nx.Graph()
    
    G.add_nodes_from(['a', 'b', 'c', 'd', 'e', 'f', 'g'])
    G.add_edges_from([('a', 'c'), ('b', 'c'), ('c', 'd'), ('d', 'e'), ('d', 'f'), ('d', 'g')])
    nx.draw(G, with_labels=True)  # 绘制网图
    plt.show()
    degree = nx.degree_histogram(G)  # 绘制度分布序列图
    x = range(len(degree))
    y = [z/float(sum(degree)) for z in degree]
    plt.loglog(x, y, color='yellow', linewidth=3)
    plt.show()
    print('节点', G.nodes())
    print('边数', G.number_of_edges())
    print('每个节点的度', G.degree())
    print('度分布序列', nx.degree_histogram(G))
    print('每个节点的聚集系数', nx.clustering(G))
    print('平均聚集系数', nx.average_clustering(G))
    print('图的直径', nx.diameter(G))
    print('富人俱乐部系数'nx.rich_club_coefficient(G))
  • 相关阅读:
    cf C. Vasya and Robot
    zoj 3805 Machine
    cf B. Vasya and Public Transport
    cf D. Queue
    cf C. Find Maximum
    cf B. Two Heaps
    cf C. Jeff and Rounding
    cf B. Jeff and Periods
    cf A. Jeff and Digits
    I Think I Need a Houseboat
  • 原文地址:https://www.cnblogs.com/Studying-Du/p/12673380.html
Copyright © 2011-2022 走看看