zoukankan      html  css  js  c++  java
  • networkx小练习

    networkx是针对复杂网络研发的库,可以通过在cmd窗口中pip 或者直接在pycharm中通过:File—>Setting-->Project-->Project interpreter 这样的路径可以看到你目前所安装的库,并且点击右上方的“+”,能够在搜索框中搜索你想安装的库,点击下方“install package”就可以安装相关库。本人是在pycharm中安装完成,非常简单快速。

    在运用networkx时会用到numpy库和matplotlib库,可以进行pip安装,在安装matplotlib时最后会自动安装numpy.

    python -m pip install matplotlib, 如果超时报错‘’raise ReadTimeoutError  '':pip install -U --timeout 1000 matplotlib,

    如果报错”these package do not match the hashes.....“:pip install --upgrade matplotlib

    import networkx as nx
    import matplotlib.pyplot as plt
    
    G = nx.Graph()
    
    G.add_nodes_from(['a', 'b', 'c', 'd', 'e', 'f', 'g'])
    G.add_edges_from([('a', 'c'), ('b', 'c'), ('c', 'd'), ('d', 'e'), ('d', 'f'), ('d', 'g')])
    nx.draw(G, with_labels=True)  # 绘制网图
    plt.show()
    degree = nx.degree_histogram(G)  # 绘制度分布序列图
    x = range(len(degree))
    y = [z/float(sum(degree)) for z in degree]
    plt.loglog(x, y, color='yellow', linewidth=3)
    plt.show()
    print('节点', G.nodes())
    print('边数', G.number_of_edges())
    print('每个节点的度', G.degree())
    print('度分布序列', nx.degree_histogram(G))
    print('每个节点的聚集系数', nx.clustering(G))
    print('平均聚集系数', nx.average_clustering(G))
    print('图的直径', nx.diameter(G))
    print('富人俱乐部系数'nx.rich_club_coefficient(G))
  • 相关阅读:
    java读取ANSI编码或者UTF8编码文件乱码问题解决
    java集合框架(Framework)的性能
    堆排序程序
    Python监控Apache,MySQL
    堆排序和快速排序性能比较
    资源管理命令
    Python监控Apache,MySQL
    资源管理命令
    javap反编译
    浏览器的用户代理字符串
  • 原文地址:https://www.cnblogs.com/Studying-Du/p/12673380.html
Copyright © 2011-2022 走看看