【BZOJ3144】[Hnoi2013]切糕
Description
Input
第一行是三个正整数P,Q,R,表示切糕的长P、 宽Q、高R。第二行有一个非负整数D,表示光滑性要求。接下来是R个P行Q列的矩阵,第z个 矩阵的第x行第y列是v(x,y,z) (1≤x≤P, 1≤y≤Q, 1≤z≤R)。
100%的数据满足P,Q,R≤40,0≤D≤R,且给出的所有的不和谐值不超过1000。
Output
仅包含一个整数,表示在合法基础上最小的总不和谐值。
Sample Input
2 2 2
1
6 1
6 1
2 6
2 6
1
6 1
6 1
2 6
2 6
Sample Output
6
HINT
最佳切面的f为f(1,1)=f(2,1)=2,f(1,2)=f(2,2)=1
题解:APIO上学到了这种建图方法,赶紧%一发
先不考虑D的限制,那么原题就是无脑最小割,图大概长这样(只考虑两个纵轴)
但如果加上这条限制,我们该怎么做?这里先给出结论,假设D=1,从7->2连一条∞的边,从3->6连一条∞的边(其余同理),原图变成了这样
(画图软件有点尴尬~)
发现如果这样连边,我们就可以防止(1,2)与(7,8)同时被割掉,因为就算割掉这两条边,S仍然可以通过5-6-3-4与T联通,所以只能割别的边
一开始我比较懒,省略了S->1,4->T这两条长度为∞的边,结果狂WA不止,后来发现R可以等于1。。。
#include <cstdio> #include <iostream> #include <cstring> #include <queue> #define P(A,B,C) ((C-1)*n*m+(B-1)*n+A) using namespace std; const int maxm=1000000; const int maxn=100010; queue<int> q; int n,m,h,S,T,D,cnt,ans; int to[maxm],next[maxm],val[maxm],head[maxn],d[maxn]; int dx[]={1,0,-1,0},dy[]={0,1,0,-1}; int rd() { int ret=0,f=1; char gc=getchar(); while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();} while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar(); return ret*f; } int bfs() { memset(d,0,sizeof(d)); while(!q.empty()) q.pop(); int i,u; d[S]=1,q.push(S); while(!q.empty()) { u=q.front(),q.pop(); for(i=head[u];i!=-1;i=next[i]) { if(!d[to[i]]&&val[i]) { d[to[i]]=d[u]+1; if(to[i]==T) return 1; q.push(to[i]); } } } return 0; } int dfs(int x,int mf) { if(x==T) return mf; int i,k,temp=mf; for(i=head[x];i!=-1;i=next[i]) { if(d[to[i]]==d[x]+1&&val[i]) { k=dfs(to[i],min(temp,val[i])); if(!k) d[to[i]]=0; val[i]-=k,val[i^1]+=k,temp-=k; if(!temp) break; } } return mf-temp; } void add(int a,int b,int c) { to[cnt]=b,val[cnt]=c,next[cnt]=head[a],head[a]=cnt++; to[cnt]=a,val[cnt]=0,next[cnt]=head[b],head[b]=cnt++; } int main() { n=rd(),m=rd(),h=rd(),D=rd(); memset(head,-1,sizeof(head)); int i,j,k,l; S=0,T=n*m*h+1; for(k=1;k<=h;k++) { for(i=1;i<=n;i++) { for(j=1;j<=m;j++) { if(k==1) add(S,P(i,j,k),rd()); else add(P(i,j,k-1),P(i,j,k),rd()); if(k==h) add(P(i,j,k),T,1<<30); if(k>D) for(l=0;l<4;l++) if(i+dx[l]&&i+dx[l]<=n&&j+dy[l]&&j+dy[l]<=m) add(P(i,j,k),P(i+dx[l],j+dy[l],k-D),1<<30); } } } while(bfs()) ans+=dfs(S,1<<30); printf("%d",ans); return 0; }